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Abstract. The paper presents an overview of the advantages and disadvantages of 
using different finite element types for the discretization of thin-wall structures. Thin-
walled structures are usually described in modern CAD program packages as a solid 
geometry. Boundary surfaces of a solid geometry are usually defined as a nonuniform 
rational basis spline (NURBS). Contrary to CAD models, FE modelling of thin-walled 
structure models is often performed using the shell element type with different 
formulations. The paper provides an overview of the obtained results and the 
convergence speed of the finite element method using different isoparametric and 
isogeometric types of finite elements. 
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1. INTRODUCTION 

The structural analysis of thin-walled structural elements by using the finite element 
method is most often carried out with a shell element type. Usually, the reason for using 
this type of element is in the limitation of computing resources. A complex thin-walled 
structure modeled with this type of element has fewer numerical requirements compared 
to a model discretized with solid elements. Meshing with a shell element type requires 
some CAD modifications. The process consists of two stages: detail removal and 
dimension reduction. In the detail removal stage, small features such as fillets or holes, 
which do not affect the analysis results considerably, are excluded from the model. In the 
dimension reduction stage, the complex 3D-field is condensed to essential ingredients of 
the structural response described by a 2D-approach. These models are computationally 
efficient and allow rapid design optimization of the structure. 

In the design process, a 3D CAD model is usually created due to the development of 
the production process. The main difference, compared to the initial design, is that for the 
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meshing with the shell finite element it is necessary to define the middle surface of thin-
walled structures. The advantage obtained by using a shell element type in terms of 
solution execution time is partly reduced by the necessity to create a suitable idealization 
from a 3D-model. In practice, a shell element type with six degrees of freedom at the 
node is mostly used [1, 2, 3, 4, 5]. Conditionally, a shell finite element with only 
translational degrees of freedom in the nodes forms a structure with a smaller number of 
unknowns [6, 7, 8]. On the other hand, the size of the stiffness matrix band is usually 
larger due to the higher degree of continuity at the element boundary, which requires a 
longer computing time. The shell type of a finite element is also applicable to structures 
made of complicated material systems [9, 10]. The so-called "solid-shell" element type, 
which is between the solid and the shell element type, has only translational degrees of 
freedom [11]. The degree of element basic functions is an important parameter that 
affects the quality of the solution. The classical FEM is mainly based on the application 
of isoparametric finite elements [12]. These types of elements use the same shape 
functions, typically Lagrange polynomials, to approximate both the displacement field 
and the geometry of element. A special area of finite element analysis is isogeometric 
analysis [13]. This type of analysis uses the same basic functions to describe the CAD 
geometry, the displacement field approximation, as well as the geometry of the element 
itself [14, 15, 16, 17]. Isogeometric analysis uses finite elements of higher degree basis 
functions with a higher degree of continuity at the element boundaries. This feature of 
isogeometric analysis gives a number of advantages in terms of convergence speed 
compared to the classical finite element method. The paper presents an extract from the 
conducted investigation. 

2. FINITE ELEMENT TYPES FOR THIN-WALLED SOLIDS MODELING  

As previously mentioned, the discretization of thin-walled structures is most often 
performed with a solid or shell element type. Among different types of 3D finite 
elements, the authors were primarily focused on tetrahedral and hexahedral elements. 
Tetrahedral elements are candidates due to their capability of modeling any geometry and 
a rather low numerical effort required for one element. Hexahedral elements, on the other 
hand, are candidates due to relatively high accuracy they offer, which is, however, paid 
by a higher numerical effort for one element. Of course, the ratio between accuracy and 
numerical effort for the whole model eventually becomes the decisive factor. Wedge 
elements are not particularly considered, but it is clear that they, together with tetrahedral 
elements, would be the choice in situations where the geometry meshing require them.   

As already mentioned, modeling of thin-walled structures with a shell element type 
requires appropriate modifications of the initial CAD geometry. Depending on the ratio 
of plate thickness and structure dimensions, stress changes in the direction normal to the 
middle surface of the shell can be different. Depending on the stress change, different 
types of shell elements are used for modeling thin-walled structures.  

2.1. Tetrahedral elements in modeling thin-walled solids 

As already emphasized, it is the numerical efficiency of a single element combined 
with high meshing ability that renders this type of element a candidate for the 
investigation. However, the limitation imposed on the aspect ratio of the tetrahedral 
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element by commercial meshers requires the elements to be similar in size in all 
directions. The authors kept the aspect ratio less than 2. This means that many elements 
are required to model a region that has large lateral dimensions but small thickness. For 
instance, when modeling a plate with in-plane dimensions of 15001000 mm and with 
thickness of 15 mm, this requirement results in 79200 elements with the aspect ratio 
equal to 1 and one element over the thickness, or in 9700 elements by loosing the 
requirement for aspect ratio to 2. Hence, though the numerical effort for a single element 
is rather small, the complete model could not offer any advantage regarding this aspect. 
Furthermore, the element demonstrates too stiff behavior. With linear shape functions, 
this is obviously to be attributed to the fact that the linear tetrahedral element is capable 
of representing only constant strain states. For the above mentioned plate at least 4 linear 
elements over the thickness, which means a total number of elements in the order of 106 
for the whole model, were necessary to obtain results comparable with those from the 
shell element. The quadratic tetrahedral element does not require such a fine mesh, but 
the overall numerical effort is still very high since a single element has a greater number 
of degrees of freedom compared to the linear element. Therefore, as expected, it was 
promptly decided to switch the focus to the hexahedral element.  

2.2. Hexahedral elements in modeling thin-walled solids 

As for the mesh with the hexahedral element, it was decided to use the strategy that 
implies the same in-plane mesh as with the shell element and to start with one element 
across the thickness. The calculation of examples should then point out if a greater 
number of elements across the thickness are required, when it is aimed at global behavior 
of thin-walled structures. Since the quadratic shell element with reduced integration is 
used for comparison purposes, it was decided that the hexahedral element should also use 
quadratic shape functions as well as the reduced integration technique. The comparison 
of results is done for linear and geometrically nonlinear computations.  

2.3 Shell elements in modeling thin-walled structures and isogeometric approach 

Modeling of thin-walled structures is most often done with thin Kirchhoff-Love shell 
elements or the thick Reissner-Mindlin shell element type. Other types of higher-order 
shell element types are less common in commercial software packages and are used 
mostly for scientific considerations. If the normal to the middle surface of the 
undeformed model remains normal to the middle surface and unstretched in the deformed 
state, the Kirchhoff-Love shell type model can be used. This shell model requires C1 
continuity at the element boundaries and has three degrees of freedom at the node. Due to 
the continuity condition, which is difficult to achieve for standard finite elements based 
on Lagrange shape functions, this type of element is less common. The Reissner-Mindlin 
element type incorporates transverse shear strains, which cannot be neglected in thick 
shell analysis. Due to the six degrees of freedom in the node, it requires more computing 
resources. This type of element with a reduced number of integration points was used in 
the paper. The reduced number of integration points is a measure of reducing the effect of 
shear locking. 

Modeling of thin plates and shells in the isogeometric approach can be performed 
with a solid or shell element type. What makes this finite element method different from 
the classical one is that it can achieve a high degree of continuity at the element 
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boundaries. The basic functions of an element are predetermined for a defined surface 
and, depending on the degree of the basic functions and the knot vector, they extend 
through several elements. This is also the reason why this type of analysis is suitable for 
the application of the Kirchhoff-Love element type which requires C1 continuity at the 
element boundary and has three degrees of freedom at the node [8, 18,19]. 

Due to the comparison of the results with the shell-type element in the commercial 
software package, we decided to use the Reissner-Mindlin isogeometric element type 
with a second-order of basic functions in both directions [20, 21, 22]. Changing the 
density of the mesh and the degree of the NRUBS basic functions is achieved by the 
techniques of knot inserting in the knot vector (parametric space) as well as by increasing 
the degree of the surface basic functions. In this way, a new surface is obtained, which is 
identical to the previous one in the geometric sense, but is defined with a larger number 
of elements and different degrees of basic functions. In the case of curved NURBS 
surfaces, not all control points are located on the surface itself. This makes it impossible 
to place the load in the control point (it does not have a direct projection on the surface 
itself) without violating the achieved degree of continuity at the boundaries of the 
elements. For this reason, the surface pressure and concentrated forces at the boundary of 
the structure were used as load. 

Using higher-order basis functions reduces the risk of shear-locking effects. Several 
authors have presented the procedure for reducing the number of integration points and 
the application of special quadrature formulas, taking into account that the basic 
functions extend through several elements [23, 24]. In order to compare the results with 
the classic finite element method, a NURBS element with second-order basic functions 
was used in the paper. The results obtained by the 20-node quadratic solid element are 
compared with the results obtained with the 8-node quadratic shell element from the 
ABAQUS finite element library. Both finite elements have a reduced number of 
integration points.  

3. SOLUTION CONVERGENCE - EXAMPLES 

The paper presents three characteristic examples of a flat plate, a single and a double 
curved shell. All models are formed with isoparametric shell element type (S8R), 
isogeometric shell type (NURBS) and solid element type (C3D20R) of single, double and 
triple elements in the direction of thickness. The study provides an overview of the 
results of linear and non-linear static analysis for all models. 

3.1 An example of a double-sided clamped plate. 

The first observed structure is the plate with dimensions 1500100015 mm, made of 
steel (with modulus of elasticity E=2.1ꞏ105 N/mm2 and Poisson coefficient =0.33). The 
plate is exposed to a constant surface pressure p=120 kPa and clamped over two shorter 
edges (Fig. 1a). The pressure was chosen so that noticeable geometrically nonlinear 
effects would occur during deformation and, hence, linear and geometrically nonlinear 
results show significant difference. Point A, which is a mid-point of the plate free edge, is 
chosen as a representative point to observe its deflection, w. 
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Fig. 1 a) Double-sided clamped plate exposed to surface pressure;  
b) linear (straight line) and nonlinear (curved line) analysis of point A deflection 

The example is first computed with quadratic shell elements and results for the mesh 
with 812 elements may be accepted as a representative solution for both linear and 
nonlinear computation. Of course, in linear analysis the behavior is bending dominated, 
whereas in nonlinear analysis the membrane behavior rapidly gains in importance as 
deformation progresses, thus rendering the structure stiffer. The diagram in Fig. 1b 
depicts the obvious differences between linear and geometrically nonlinear results. Table 
1 shows that the results from the hexahedral element with only 1 element across the 
thickness converge to the same values as the results from the shell element, though the 
convergence is slower, as expected. It may be noticed that the hexahedral element with 
the mesh of 8121 elements yields a displacement that is 3.6 % stiffer for the linear and 
1.6 % stiffer for the nonlinear case compared to the result from the model with shell 
elements.  

Table 1 Results of linear and non-linear analysis of various models of  
a double-sided clamped plate  

  shell 
(ABAQUS S8R) 

3D solid 
ABAQUS 

C3D20R x 1 

3D solid 
ABAQUS 

C3D20R x 2

NURBS 
P2Q2 

Mesh in-
plane 

In-plane 
number 
of elem. 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

23 6 25.68 15.56 21.69 14.61 24.55 15.32 25.73 15.59 
46 24 26.84 15.81 24.99 15.36 26.30 15.69 26.86 15.81 
812 96 26.92 15.81 25.98 15.56 26.63 15.75 26.93 15.81 
1624 384 26.94 15.82 26.46 15.69 26.78 15.78 26.94 15.82 
3248 1536 26.94 15.82 26.70 15.76 26.85 15.80 26.94 15.82 
6496 6144 26.94 15.82 26.82 15.80 26.89 15.82 26.94 15.82 
128192 24576 26.94 15.82 26.88 15.81 26.90 15.82 26.94 15.82 

 
The results for meshes with 2 hexahedral elements over the thickness show that the 

convergence is obviously somewhat faster and for the mesh of 8122 elements the 
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result is 1.1 % stiffer in the linear and 0.4 % stiffer in the nonlinear case, again compared 
to the result from the model with shell elements. Hence, in this case, the model with 
hexahedral elements that uses the same in-plane mesh as the shell element can 
satisfactorily describe the global behavior of the considered structure. The number of 
elements across the thickness is to be determined by accuracy requirements, but one may 
notice that one element over the thickness already suffices to generally represent the 
structure’s global behavior. 

The diagrams in Fig. 2 depict the convergence of results as a function of the in-plane 
mesh, whereby a different number of elements across the thickness have been considered. 
The shell element demonstrates quite fast convergence and the convergence of the 
hexahedral element improves as the number of elements across the thickness increases 
from 1 element (denoted with 1ED) to 3 elements (denoted with 3ED).  

 

 
 

 

Fig. 2 Plate structure – point A deflection as a function of in-plane mesh: a) linear 
analysis; b) geometrically nonlinear analysis 
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As a part of the conducted investigation, the authors have also considered the same 
structure but with different sets of boundary conditions and load cases. All those cases 
led to very similar results and are, for the sake of brevity, not given here.  

3.2 Example of a shell curved in one plane 

A curved shell structure implies more complicated structural behavior as well as 
induced strain and stress states. Such a structure resists the external excitations in a more 
complex way. Those are also typical structures in the automotive industry, the aerospace 
industry, etc. Therefore, in the next step the authors have considered a shell structure 
curved in only one plane.   

The considered shell structure has the same dimensions as the previously considered 
plate structure but is curved around one axis with the radius of curvature r=9.75 m (Fig. 
3). It is exposed to the same excitation, i.e. the surface pressure of p=120 kPa. The shell 
is clamped along the two shorter edges. 

 

 

Fig. 3 Simply curved shell exposed to surface pressure; b) linear (straight line) and 
nonlinear (curved line) deflection of point A 

The same pattern of analysis used in the first example has been followed here as well. 
Interestingly, the convergence from both shell and hexahedral elements progresses at 
very similar pace and, furthermore, the result from the shell FEM model is somewhat 
stiffer. This trend is to be recognized from Table 2 and from the diagrams in Fig. 4. Point 
A, upon which the external excitation acts, is chosen as a representative one. By 
analyzing the obtained results, it can be seen that there are significant differences 
between linear and non-linear analysis, as well as between the results obtained with solid 
elements and with shell elements. The reasons are multiple. Greater deformation than the 
thickness dimension of the shell causes special stress-deformation states in the element 
which are manifested differently in linear and non-linear analysis. In the case of a very 
fine mesh, there are changes in the aspect ratio of the elements, which leads to deviations 
in convergence. 
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Table 2 Results of linear and non-linear analysis of various models of  
a double-sided supported simply curved shell 

  shell 
(ABAQUS S8R) 

3D solid 
ABAQUS 

C3D20R x 1 

3D solid 
ABAQUS 

C3D20R x 2

NURBS 
P2Q2 

Mesh in-
plane 

In-plane 
number 
of elem. 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

23 6 5.684 9.649 5.829 9.614 5.528 8.643 5.401 9.410 
46 24 5.673 10.12 6.105 11.830 6.065 11.470 5.668 10.190 
812 96 5.675 10.18 6.113 12.030 6.174 12.040 5.675 10.195 
1624 384 5.677 10.20 6.123 12.070 6.173 12.250 5.680 10.205 
3248 1536 5.678 10.20 6.143 12.140 6.193 12.330 5.683 10.209 
6496 6144 5.678 10.20 6.206 12.370 6.228 12.450 5.684 10.209 
128192 24576 5.678 10.20 6.502 13.530 6.290 12.690 5.684 10.210 

 

 
 

 

Fig. 4 Simple-curved shell – deflection of point A as a function of in-plane mesh:  
a) linear analysis; b) geometrically nonlinear analysis  
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3.3 Example of a double-curved shell 

The level of complexity of structural behavior is once again raised by considering a 
structure that is double-curved in space. So, the dimensions are the same as in the 
previous examples, but the shell is curved around two perpendicular axes with radii of 
r1=7 m (for the longer pair of edges) and r2=5.5 m (for the shorter pair of edges). The 
structure is clamped over a shorter edge and is exposed to a single vertical force 
F=5000N acting at a free corner point of the structure (Fig. 5). 

 

 

Fig. 5 a) Double-curved shell exposed to single force; b) linear (straight line) and 
nonlinear (curved line) deflection of point A 

 

Fig. 6 Double-curved shell – deflection of point A as a function of in-plane mesh:  
 linear analysis  

The same analysis pattern has been followed again and, for the sake of brevity, the 
results are given in the form of diagrams in Fig. 6 and 7. An interesting convergence 
behavior of the hexahedral element should be observed in this and the previous example. 
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Fig. 7 Double-curved shell – deflection of point A as a function of in-plane mesh:  
 nonlinear analysis  

Table 3 Results of linear and non-linear analysis of various models of  
a double-curved shell exposed to single force 

  shell 
(ABAQUS S8R) 

3D solid 
ABAQUS 

C3D20R x 1 

3D solid 
ABAQUS 

C3D20R x 2

NURBS 
P2Q2 

Mesh in-
plane 

In-plane 
number 
of elem. 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

linear 
non- 
linear 

23 6 63.84 76.36 63.51 74.51 21.68 21.34 62.95 75.18 
46 24 63.34 76.76 63.22 75.21 54.49 53.26 63.48 76.85 
812 96 63.69 77.41 63.37 76.42 63.05 63.09 63.66 77.43 
1624 384 63.73 77.49 63.48 76.81 63.59 63.63 63.74 77.5 
3248 1536 63.75 77.51 63.55 77.01 63.66 63.67 63.76 77.51 
6496 6144 63.75 77.51 63.59 77.22 63.68 63.69 63.76 77.52 
128192 24576 63.76 77.52 63.6 77.26 63.7 63.71 63.76 77.53 

 
One may notice that the FEM model with one hexahedral element across the thickness 

has very similar convergence pace as the shell element, whereas a greater number of 
hexahedral elements across the thickness give stiffer results for the coarsest meshes. Of 
course, as the in-plane mesh gets finer, those models converge to a result quite close to 
the result from the model with only one element over the thickness. At first glance, the 
result may cause some raised eyebrows. However, this is a consequence of the induced 
complex stress state combined with non-recommendable aspect ratio for the hexahedral 
element. For the coarsest meshes, ABAQUS issues warning that the aspect ratio of 100 
has been exceeded. Obviously, such a breach of meshing recommendations becomes an 
issue with more complex stress states, since no similar effect was recognized in the first 
considered case, which involves less complex stress states induced in the structure, but is 
seen in the second and third example. 
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4. CONCLUSIONS 

The paper presents an extract from the authors’ investigation into an adequate choice 
of a standard 3D finite element and isogeometric meshing strategy for modeling thin-
walled structures, conditioned by a given 3D CAD model, i.e. without the extraction of 
the reference surface. Since it is a relatively short extract, it was primarily aimed at 
demonstrating the applied approach to the problem and giving some of the most 
important conclusions.  

It is a common knowledge in the FEM community that tetrahedral elements are 
typically rather stiff and that they require a rather fine mesh (and hence a great numerical 
effort) to produce sufficiently accurate results. However, they are, together with wedge 
elements, necessary in a number of situations where geometry meshing requires their 
application. The first few cases in the authors’ investigation already confirmed this 
common knowledge. 

Therefore, the rest of the investigation was focused on hexahedral elements. Although 
not presented here, the linear element and full integrated elements were also examined 
more closely. Their behavior was rather stiff, thus requiring very fine meshes. So, the 
final choice and the authors’ recommendation is the quadratic hexahedral element with 
the reduced integration technique included. Furthermore, one should follow the 
recommendation regarding the aspect ratio for the element. This recommendation is 
particularly important in relation to the number of elements across the thickness of the 
structure. A greater number of elements over the thickness is expected to result in better 
accuracy, but, by keeping the same in-plane mesh, this might jeopardize the mentioned 
recommendation and, with complex stress states, the accuracy may unexpectedly 
deteriorate. The deformed configuration, i.e. the displacement field, was used in the paper 
as a criterion to determine the adequacy of 3D element choice and meshing strategy. 
Though not presented here, in their investigation, the authors also considered the 
computed strain and stress fields, which represent a stricter criterion. This aspect did not 
affect the nature of the conclusions drawn here. 
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