
INNOVATIVE MECHANICAL ENGINEERING                                                 ISSN 2812-9229 (Online) 
University of Niš, Faculty of Mechanical Engineering  
VOL. 4, NO 1, 2025, PP. 1-10 



Received: April 02, 2025 / Accepted April 16, 2025.  
Corresponding author: Mirko M. Stojiljković 
Institution: University of Niš, Faculty of Mechanical Engineering in Niš, Niš, Serbia 
E-mail: mirko.stojiljkovic@masfak.ni.ac.rs  
 
© 2025 by Faculty of Mechanical Engineering University of Niš, Serbia 
 

Original scientific paper * 

DAY-AHEAD FORECASTS OF EXCHANGED HEAT IN A 
DISTRICT HEATING SUBSTATION WITH ENSEMBLE 

METHODS 
 

Mirko M. Stojiljković1, Marko G. Ignjatović1, Goran D. Vučković1 
 

1University of Niš, Faculty of Mechanical Engineering in Niš, Niš, Serbia 

Abstract. Short-term forecasts of heating loads are very important for planning the 
operation of energy supply systems successfully. The heat demand of a building depends 
on various parameters that include the materials, geometry, occupancy, type of activity, 
etc. There are a number of machine learning methods and approaches used in the 
literature to accomplish these tasks. This paper presents a segment of broader research. 
The objective is to forecast the amount of heat exchanged in a district heating substation 
between the primary network and the secondary heating system of a multi-story 
residential building. Forecasts are performed 24 hours ahead, with the resolution of one 
hour. The paper applies and compares multiple ensemble regression methods based on 
decision trees. The input parameters are heat demand lags, time-related variables, e.g. 
hour of day, day of week and month, and dry bulb temperature as the most important 
weather variable. The time-series problem is transformed into a classical supervised 
machine learning problem. The models are trained and tested with the actual measured 
data collected over five heating seasons. The paper examines the performance of four 
methods: gradient boosting, histogram gradient boosting, extremely randomized trees 
and random forest. The applied evaluation metrics for the models are the coefficient of 
determination, root mean squared error and mean absolute error. All methods used have 
very similar prediction performance. Random forest has the smallest root mean square 
error (43.56 kWh), while extremely randomized trees have the lowest mean absolute 
error (27.34 kWh). 
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1. INTRODUCTION 

Modern district heating (DH) systems rely on heat demand forecasts for optimal 
operation planning, management and renewable energy utilization. Data-driven models are 
often suitable for this task because they have sufficient speed and accuracy. In addition, 
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they do not require the values of all the variables that impact the demand, such as building 
material properties, geometry, weather data occupancy and usage patterns, etc. 

One of the main characteristics of such problems is the existence of complex and non-
linear dependencies of the target variable and predictors, especially weather data and user 
behavior. Shakeel et al. [1] underlined the importance of short-term load prediction for DH 
systems and used a hybrid of FB-Prophet that enables feature extraction and light gradient 
boosting machine (LightGBM) that is efficient in handling nonlinearities. The best 
approach examined for LightGBM hyperparameter optimization was the grid search. In 
addition, they emphasized the specific properties of DH-load-related data: the absence of 
consistent trend and seasonality, as well as several weather parameters as inputs. 

There are several supervised machine learning models that can be applied to the 
problem of time series forecasting of heat demand. Frison et al. [2] stated that accurate 
predictions of the heat demand are important to improve energy efficiency and achieve 
economic benefits in DH systems. They compared several types of artificial neural 
networks (ANN) with the seasonal autoregressive integrated moving average with 
exogenous regressors (SARIMAX) and concluded that a convolutional neural network 
(CNN) is the most accurate one, while all models learned the trends successfully, but 
exhibited difficulties with fluctuations and peaks. Leiprecht et al. [3] predicted the heat 
demand of a DH system for a 72-hour horizon with weather forecast input and concluded 
that long short-term memory (LSTM) and adaptive boosting (AdaBoost) perform better 
than SARIMAX. 

Saloux and Candanedo [4] emphasized the importance of short-term prediction of the 
heat load for the optimal management of renewable energy systems with energy storage. 
They used a decision tree (DT), support vector machine (SVM) and ANN to predict the 
heat demand six and 48 hours ahead. An important conclusion is that weather forecasts can 
improve performance to some extent for short-term prediction. They used outdoor air 
temperature, solar radiation, time of day, working hours and weekends as input. Similarly, 
Runge and Saloux [5] predicted the demand six and 24 hours in advance and concluded 
that the applications with input related to weather forecast performed better. LSTM and 
extreme gradient boosting (XGBoost) are found to be the methods with the best 
performance within a number of grid-searched hyperparameter combinations, while the 
latter is much faster to train. Morteza et al. [6] predicted electricity and heat demand with 
one hour resolution using deep recurrent neural network (RNN) and paid special attention 
to hyperparameter optimization, as a complex and time-consuming task. In this case, RNN 
performed better than gradient boosting (GB). 

There are two types of time series forecast problems: (1) one-step ahead predictions 
where only the demand for the next time step is obtained and (2) multiple-step ahead or 
multistep predictions that output a series of future time steps. There are two strategies for 
multistep predictions [7, 8]: (1) the recurrent strategy that uses a series of one-step 
predictions where the predicted value from the previous step is used as an input for the next 
step and (2) the direct strategy that applies the models with multiple outputs or multiple 
models. Xue et al. [8] presented multistep predictions of the heat load with XGBoost, SVM 
and deep ANN using outdoor temperature and lag demands as inputs. They compared the 
direct and recursive strategies and concluded that the recursive strategy performs better. 
Zdravković et al. [7] demonstrated the effectiveness of the LSTM encoder-decoder 
architecture for single- and multistep forecasts. They applied local interpretable model-
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agnostic explanations (LIME) and concluded that the most important features are the heat 
amounts one and 23 hours ago, followed by the outdoor temperature for the previous hour. 

Trabert et al. [9] predicted the heat demand and return water temperature of a DH 
system to optimize the operation of heat storage and cut the peaks. They found that the 
accuracy of the weather forecast is a very significant factor for prediction and peak shaving. 
Potočnik et al. [10] compared multiple predictive models for multistep forecast of the heat 
demand for a DH system. The forecast horizon was 48 hours and the resolution was one 
hour. Gaussian process regression (GPR) yielded the best results. The authors found the 
relevance of temperature forecasts for the model accuracy, but did not confirm the 
significance of future solar irradiation. They also concluded that the data for the last four 
days are useful for prediction. 

The divide-and-conquer strategy is sometimes convenient for time series predictions of 
the heat demand. Kurek et al. [11] compared several methods for the hourly forecast on a 
72-hour horizon and concluded that ANN with autoregressive input has the most accurate 
performance. They examined a DH network that covers the demand for heating and 
domestic hot water operating throughout the year. Therefore, the winter, intermediate and 
summer seasons were separated. The intermediate season was the hardest to predict. 
Another example of problem division is given by Hua et al. [12], who proposed an 
approach that combines linear regression (LR) with clustering and showed that its 
performance is close to ANN. The initial LR model was fitted and the observations were 
divided into clusters according to the residuals. A new regression model was defined for 
each cluster. They argued that clustering is not more demanding than tuning ANN 
hyperparameters and underlined the interpretable nature of the LR-based approach. Jesper 
et al. [13] used k-means clustering with regression, to predict an annual heat load with a 
daily resolution. 

Chung et al. [14] proposed the approach that joins CNN and LSTM to learn spatio-
temporal properties and improve the predictions of the heat demand to operate a 
cogeneration system. Alabi et al. [15] integrated CNN and LSTM with reinforcement 
learning (RL) for day-ahead predictions and energy system management. Chen et al. [16] 
combined heat demand predictions and deep-RL-based control to enhance the reliability of 
a system with a heat pump and water storage. 

Bünning et al. [17] reduced the variance in the accuracy of the forecast for the day 
obtained with ANN using (1) autocorrelation of errors based on the predictions from 
previous days and (2) online learning by retraining the model with new data after each day. 

Time-series forecasts of the heat demand are not limited to DH substations or systems. 
For example, Zhang et al. [18] used ANN to predict the heat demand with hourly resolution 
on a national level. 

This paper applies and compares ensemble models based on DTs for day-ahead 
prediction of the heating load, i.e. the amount of heat exchanged in a DH substation 
between the primary network and the secondary heating system, related to a substation in 
the DH system in Niš, Serbia. The substation provides heat to a multi-story residential 
building. The time step is one hour. The predictions are based on easily available past data, 
such as the dry-bulb outdoor temperature, heating load values from the previous intervals 
and time-stamp data (month, day of week, hour of day, parts of day, etc.). Applied machine 
learning methods are GB, histogram GB (HGB), extremely randomized trees (ERT) and 
random forest (RF). 
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2. METHODOLOGY 

Predicting a heating load using historical data as inputs and data-driven black-box 
models is a supervised machine learning problem. In particular, it is a regression problem 
because the target variable, i.e. the heating load, is continuous. 

The load depends on many factors, such as building geometry and materials, weather 
conditions, occupancy, user habits, etc. Some of these factors are hard to express 
numerically with sufficient accuracy. The most widely used features for data-driven 
prediction of the heating load are the historical, i.e. previous values of the load, time-related 
variables and weather data, primarily air temperature and solar irradiation. 

In this paper, chosen predictors should be suitable for day-ahead forecasts and relatively 
convenient to collect and prepare. The following input variables are considered: 

 Heating load lags, i.e. historical load values, 
 Time-stamp data: year, month, one-hot-encoded day of week, hour of day, as well 

as four binary variables that correspond to the one-hot-encoded time of day 
(morning 05:00–08:00, day 08:00–20:00, evening 20:00–23:00 and night 23:00–
05:00), 

 Weather data, which is limited only to the historical dry-bulb temperatures of the 
outdoor air due to the convenience of collection. 

The final choice of the inputs is conducted based on the correlation and auto-correlation 
between the variables. 

Feature engineering includes applying one-hot-encoding to the categorical variables, as 
already mentioned. It might also cover feature scaling, although this is usually not required 
for DT-based methods. 

Formulating forecast models based on measured data often requires the data cleaning 
step because of measurement errors and missing observations. This is particularly 
important for time-series predictions. There are several approaches to the imputation of 
missing data. For example, the moving average imputation approach is based on the rolling 
window and inserts the mean or median of the nearby values. Exponential moving average 
puts higher weights on the recent data. There are various methods to handle the outliers. 
For example, the Hampel filter uses the median absolute deviation within nearby values to 
detect outliers and then replaces them with the median of these nearby values. 

The entire dataset should be divided into two parts: (1) observations used for training, 
i.e. formulating data-driven models and (2) observations for testing, i.e. final validation of 
the model prediction performance. If the dataset is large enough, its training part could be 
further divided to perform cross-validation. In this paper, the last year is used for the 
validation of the model and previous observations are applied for fitting. 

The models are formulated using four machine learning methods: (1) GB, (2) HGB, (3) 
ERT and (4) RF. All these methods use ensembles of DTs, i.e. combine multiple DTs as 
weak learners to obtain accurate predictors. GB and HGB are so-called boosting methods: 
they train the models sequentially focusing on the errors found in the previous models. 
ERT and RF train multiple DT models independently and aggregate the results when 
predicting. 

Hyperparameter optimization is the process of tuning model hyperparameters, such as 
the number of DT estimators, allowed depth of DTs, minimal number of samples in a leaf 
of a DT, number of features used for each split, etc. Grid search is a widely used approach 
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for hyperparameter tuning. It examines all possible combinations of provided 
hyperparameter values and selects the model with the best performance. 

The metrics used to express and compare predictive performance of the obtained 
models used in this paper are the coefficient of determination (R²), root mean square error 
(RMSE) and mean absolute error (MAE). 

The coefficient of determination is dimensionless and represents the part of the target 
variance explained by the predictors. It is defined in Eq. (1): 

 𝑅ଶ ൌ 1 െ
∑ ሺ௬ି௬ෞሻమ
సభ

∑ ሺ௬ି௬തሻమ

సభ

 (1) 

where 𝑛 is the sample size, i.e. the number of observations, 𝑦௧ is the measured heating load 
during the time step 𝑡, expressed in kWh, 𝑦௧ෝ  is the predicted load for the interval 𝑡 and 𝑦ത 
is the arithmetic mean of all measured values. In this case, an observation is related to a 
single time step. 

RMSE represents the quadratic error of the prediction. In this paper, it is expressed in 
kWh. It is defined in Eq. (2): 

 RMSE ൌ ටଵ


∑ ሺ𝑦௧ െ 𝑦௧ෝ ሻଶ
௧ୀଵ  (2) 

MAE is an absolute error. It is defined in Eq. (3) and also given in kWh: 

 MAE ൌ
ଵ


∑ |𝑦௧ െ 𝑦௧ෝ |
௧ୀଵ  (3) 

3. RESULTS AND DISCUSSION 

The dataset for the day-ahead forecast of the heating load is obtained from an actual 
data collection system and is related to a DH substation located in Niš, Serbia. The 
substation receives heat from the DH plant via the network and supplies a multi-story 
residential building. The DH system operates from October to April. Usually, there is no 
heat supply during night, except when the outdoor temperature is very low. 

The auto-correlation plot shown in Fig. 1 presents the values of the Pearson correlation 
coefficient, which measures the strength of linear relationship. It indicates that the most 
relevant historical value of the heating load for predictions is the 24-hour lag. The load 
information from approximately the same time during the previous day is strongly 
correlated to the future load with the correlation coefficient of 0.71. The 48-hour lag also 
has a very high correlation coefficient, but it can be assumed that it is mostly the 
consequence of its high correlation with the 24-hour lag. The 23 and 25-hour lags are also 
highly correlated with the predicted value. The 1-hour lag, i.e. the load from the previous 
hour is very relevant as well but cannot be used for day-ahead prediction. The Spearman 
correlation, which represents a measure of the monotonic relationship, has very similar 
values and trends of the coefficients as the Pearson correlation. 

Fig. 2 illustrates the load dependence on the outdoor temperature with the regression 
line. The decreasing trend is expected. There is a large number of zero values, which 
dominantly correspond to the periods when the DH system does not work, e.g. during 
nights. These values might be particularly problematic to learn by prediction models. 
Unproportionate high values are mostly related to the morning peak demand. 
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The following features are selected as the input variables to prediction models: 
 The heating load 24 and 25 hours before the time of the prediction, 
 The outdoor air temperatures 24 and 25 hours before the time of the prediction, 
 The month of the year, 
 The day of week, 
 The hour of day, 
 The time of day. 

All categorical features, except the hour of day, are modified to the groups of binary 
features using one-hot encoding. 

 

Fig. 1 Auto-correlation plot for the heating load. 

 

Fig. 2 Heating load dependence on the temperature. 

The models are formulated and validated using four regression methods: (1) GB, (2) 
HGB, (3) ERT and (4) RF. Hyperparameters are optimized with the grid search approach. 
The predictive performance of the best model for each method is shown in Tab. 1. All 
methods yield very similar performance. The coefficient of determination for the validation 
set is almost constant across the models (approximately 0.69). RF has the lowest RMSE 
and the second lowest MAE. ERT performs best in terms of MAE. However, both RMSE 



Day-Ahead Forecasts of Exchanged Heat in a District Heating Substation with Ensemble Methods 7 

and MAE are very similar for all four models. Therefore, the RF model is selected as the 
one with the best performance and the rest of the results are related to it. 

Table 1 Performance of the models 

Method R² RMSE MAE 
Gradient boosting 0.69 43.77 28.68 
Histogram gradient boosting 0.69 43.87 27.74 
Extremely randomized trees 0.69 44.09 27.34 
Random forest 0.69 43.56 27.50 

Machine learning methods based on DTs calculate feature importance naturally. It 
illustrates the relative contribution of each feature to the predictive performance of the 
model. It is obtained by observing performance gain when a particular feature is used for 
data splitting. Fig. 3 shows feature importance obtained with RF. The feature with the 
highest importance is the heating load that occurred 24 hours before the time of prediction 
(56%), followed by the hour of day (14%), 25-hour load lag (5%), temperatures, etc. This 
means that the model learns dominantly by trying to replicate previous load patterns and 
much less by trying to find the relation between the heating load and the temperature. 

 

Fig. 3 Feature importance. 

Fig. 4 shows the relationship between the actual and predicted heating load values, as 
well as the error distribution. There is a certain number of observations where the actual 
load is zero or very close to zero, while the predicted values are up to 200 kWh. Around 
25% of all actual zero values are predicted to be over 25 kWh and around 14% have the 
error over 50 kWh. Handling such observations with greater attention seems to be a way 
to improve the predictive performance of the models. The errors are distributed around 
zero, approximately equally towards positive and negative values. Around 82% of errors 
have the absolute value lower than 50 kWh and around 57% has the error below 20 kWh. 
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Fig. 4 Heating load forecast precision and error frequency. 

Fig. 5 illustrates the distribution of errors according to the time of day. The largest 
errors are made in the morning hours, especially around 05:00 and 06:00, when morning 
peaks occur. The smallest errors correspond to the night hours when the heating is usually 
off. Relatively large errors occur also around noon and in the early afternoon, which is 
usually related to the decision of the DH operator to turn off the service due to mild 
conditions. 

 

Fig. 5 Heating load forecast precision and error distribution during daytime. 

Fig. 6 compares actual and predicted load profiles from November to January. It can be 
noticed that daily trends and changes are generally learned well, especially zero loads 
during nights, morning increases and evening decreases. However, a few cases with high 
deviations can be noted. For example, at the beginning of December and January, the load 
profiles differ significantly compared to the other days. In such cases, the model tries to 
replicate the dominant load patterns and makes large errors. The model also struggles to 
correctly understand how to predict the morning peak values. There are observations with 
both overestimated and underestimated peaks, which are consistent with the results 
presented in Fig. 5. Finally, it seems that the model cannot predict turning off the supply 
around noon. 



Day-Ahead Forecasts of Exchanged Heat in a District Heating Substation with Ensemble Methods 9 

 

Fig. 6 Comparison of actual and predicted heating load profiles. 

4. CONCLUSION 

The forecasts of the heating load are important for optimal operation planning, 
management and renewable energy utilization within district heating systems. Machine 
learning models are often a suitable choice for this task. This paper uses and compares four 
ensemble regression methods based on decision trees to conduct day-ahead prediction of 
the amount of heat exchanged in a district heating substation between the primary network 
and the secondary heating system. 

The main conclusions are: 
 All ensemble methods exhibit very similar prediction performance and 

aggregation methods are slightly better than boosting methods. 
 The most important features are the load values from the previous day and the 

hour of day. 
 Dominant patterns are generally learned well. 
 Large errors are often related to unusual daily load patterns, peak loads and 

turning off the district heating service around noon. 
Future work can focus on improving accuracy by addressing the main sources of errors, 

applying other machine learning methods, and using stacking and voting ensembles. It can 
also include the estimation of the impact of prediction model performance on the operation 
parameters and energy savings in the district heating system. 
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