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Abstract. The paper defines five theorems on the properties of newly constructed 

orthogonal curvilinear coordinate systems on various revolving surfaces and ten 

theorems on the non-linear dynamics of non-slip rolling of a heavy, homogeneous and 

isotropic ball on revolving surfaces. Nonlinear differential equations of rolling, without 

sliding, a heavy, homogeneous and isotropic ball, as well as equations of phase 

trajectories are derived for two special cases, when the revolving surfaces are created 

by the rotation of a parabola, i.e., a biquadratic parabola. It is shown that for such 

nonlinear rolling dynamics there is a cyclic integral, as well as one cyclic coordinate in 

all cases of revolving surfaces. In this paper, we present only two theorems which are 

part of the scientific results of the research. Based on these, five theorems on curvilinear 

orthogonal coordinate systems constructed over surfaces of revolution and ten theorems 

on the properties of the dynamics of rolling a heavy ball on surfaces of revolution were 

defined. 
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1. INTRODUCTION  

The rolling of a ball on curvilinear paths and surfaces has attracted the attention of 
many researchers since ancient times, both in a scientific-theoretical approach, but also in 
the interest of application in engineering. There are contemporary authors who claim in 
their works that the rolling of a ball on a surface is a system with non-holonomic 
connections, and the author of this paper has shown in her works [1] that the constrains are 
holonomic and purely geometric, and that rolling, without slipping, a heavy homogeneous 
and isotropic ball on the surface is a system with two degrees of freedom of rolling and 
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with pure geometric connections. Now let us cite one doctoral dissertation, which deals 
with a special and interesting complex mechanical system of rolling a ball, which contains 
a gyroscope [2]. The dissertation was done under the mentorship of Anton Bilimović, and 
defended, back in 1924, before a commission that included prominent scientists Milutin 
Milanković, the author of the famous work "The Canon of Sun Insolation", and Mihailo 
Petrović, the founder of the Serbian School of Mathematics and one of the three doctoral 
students of the famous scientist Julius Henri Poincaré.  

The "Papus-Guldin theorems" are known, which are related to the size of the area of a 
revolving surface and the volume of an axisymmetric body, which is a contour surface in 
the form of a revolving surface. Here, we will recall the second "Papus-Guldin theorem", 
which defines the size of the volume of an axisymmetric body that is created by the rotation 
of a plane figure around an axis in its plane, which is not intersecting. It defines that the 
volume of a revolving body is equal to the product of the surface of the plane figure and 
the length of the arc of the circle described by the center of the area of the plane figure for 
one complete revolution around axis. 

These theorems were published in 1615, proved by the German astronomer and 
mathematician Johannes Kepler (1571 - 1630), and later named Guldin's rules after the 
Swiss mathematician Paul Guldin (1577 - 1643), see Fig. 1a. The rules were known to 
Pappus of Alexandria, who stated them in his 12-volume work "Syna-goge", of which the 
first, second and last volumes have been lost. The Synagoge is considered one of the best 
sources of information on ancient Greek mathematics. 

In this work we present newly constructed orthogonal curvilinear coordinate systems 
over various revolving surfaces (see Fig. 1b), as well as the nonlinear dynamics of rolling, 
without sliding, a heavy, homogeneous and isotropic ball on revolving surfaces (see Fig. 
1c and d).   
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Fig. 1.   a) Paul Guldin (1577 - 1643); b) Coordinate surfaces and coordinate lines of a 
curvilinear orthogonal coordinate system constructed over a revolving biquadratic 

parabolic surface; kinetic parameters of rolling a heavy ball on a revolving parabolic; c) 
and biquadratic and d) parabolic surface. 
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2. NEWLY CONSTRUCTED ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS OVER 
VARIOUS REVOLVING SURFACES  

2.1  The geometry of the curvilinear coordinate system under a parabolic 

revolving surface 

In this part, the geometry of the newly constructed curvilinear coordinate system under 
a parabolic revolving surface is presented by images, formulas and words, as well as by 
basic tangent vectors at points in intersection of the coordinate surfaces using curvilinear 
coordinates.  

Fig. 2a presents the geometry of the curvilinear coordinate system under a parabolic 
revolving surface. The elements are the coordinate parabolic revolving surfaces and 
curvilinear coordinate lines of a parabolic revolving surface, system of cones and 
meridional planes, while the coordinate lines of the parabolic revolving surface are 
parabolas, straight lines and circles. 
Parametric equations of the parabolic revolving surface, via curvilinear coordinates,  
𝜌, 𝜑 and 𝑧, in the parabolic revolving cylindrical curvilinear system are of the form: 

𝑧 = 𝑘𝜌2,  𝑥 = 𝜌 𝑐𝑜𝑠 𝜑   and  𝑦 = 𝜌 𝑠𝑖𝑛 𝑠 𝜑            (1) 
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Fig.2. The geometry of the curvilinear coordinate system under a revolving surface; a)  
Coordinate surfaces and coordinate lines of a parabolic revolving surface: system of 

cones and meridional planes; the coordinate lines of the parabolic revolving surface are 
parabolas, straight lines and circles; b) Coordinate surfaces and coordinate curvilinear 

lines of a revolving biquadratic parabolic surface are: system of cones and fringed cones, 
and meridional planes; the coordinate lines of a revolving biquadratic parabolic surface 

system are biquadratic parabolas, straight lines and circles and concentric circles 

The unit vectors, in the tangential direction �⃗�  , in the normal direction  �⃗�  and in the circular 
direction 𝑐 0 of the natural orthogonal trihedron, at the point of intersection of the coordinate 
surfaces (see Ref [3]) of the newly constructed orthogonal curvilinear coordinate system 
over the revolving parabolic surface, are: 
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where k  is the parameter of the parabola,  𝜌 0 is the unit vector in the radial direction:  
 𝜌 0 = (𝑐𝑜𝑠 𝜑 𝑖 + 𝑠𝑖𝑛 𝜑 𝑗 ), and �⃗�  is the unit vector in the direction of the axis of axial 
symmetry of the parabolic revolving surface. 𝜌 0 and �⃗�  are orthogonal. 
 
2.2 The geometry of the curvilinear coordinate system under a biquadratic 

parabolic revolving surface  

In this part, the geometry of the newly constructed curvilinear coordinate system under a 
biquadratic parabolic revolving surface is presented by images, formulas and words, as well 
as by basic tangent vectors at the points of intersection of the coordinate surfaces using 
curvilinear coordinates. 
Fig. 2 presents the geometry of the curvilinear coordinate system under a biquadratic 
parabolic revolving surface. The elements are the coordinate biquadratic parabolic revolving 
surfaces and curvilinear coordinate lines of a biquadratic parabolas, system of cones and 
meridional planes, while the curvilinear coordinate lines of the biquadratic parabolas in the 
revolving biquadratic surface are biquadratic parabolas, straight lines and circles as well as 
concentric circles. 
Parametric equations of the biquadratic parabolic revolving surface, via curvilinear 
coordinates,  𝜌, 𝜑 and 𝑧, in the parabolic revolving cylindrical curvilinear system are of the 
form: 

                              𝑧 = 𝑘𝜌2(𝜌2 − 𝑎2),   𝑥 = 𝜌 𝑐𝑜𝑠 𝜙𝜑 and  𝑦 = 𝜌 𝑠𝑖𝑛 𝜑                       (3) 
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coordinate surfaces  (see Ref [3]) of the newly constructed orthogonal curvilinear 
coordinate system over the revolving biquadratic parabolic surface, are: 
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 and  𝑐 0 = −𝑠𝑖𝑛𝜑𝑖 + 𝑐𝑜𝑠 𝜑 𝑗       (4) 

where k  and 2a are the parameters of the biquadratic parabola, 𝜌 0  is the unit vector in the 
radial direction: 𝜌 0 = (𝑐𝑜𝑠 𝜑 𝑖 + 𝑠𝑖𝑛 𝜑 𝑗 ), and �⃗�  is  the unit vector in the direction of the 
axis of axial symmetry of the parabolic revolving surface. 𝜌 0 and �⃗�  are orthogonal. 
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3. THE NONLINEAR DYNAMICS OF ROLLING, WITHOUT SLIDING, A HEAVY, HOMOGENEOUS 
AND ISOTROPIC BALL ON REVOLVING SURFACES 

The dynamics of a ball rolling on a surface has holonomic stationary connections and two 
degrees of freedom of movement, and for the generalized coordinates we choose 
curvilinear orthogonal coordinates 𝝆  and  𝝋 . 

3.1  Kinematic parameters of the nonlinear dynamics of rolling of a heavy, 

homogeneous and isotropic ball on a revolving parabolic surface 

Fig. 3a* presents kinematic parameters of the nonlinear dynamics of rolling a heavy, 
homogeneous and isotropic ball on a revolving parabolic surface. The velocity of the center 
of mass of the ball and the point of contact of the rolling ball and the revolving parabolic 
surface are visible. 
The position vector of the contact point, whose coordinates are 𝑧 = 𝑘𝜌2, 𝑥 = 𝜌 𝑐𝑜𝑠 𝜑 and 
𝑦 = 𝜌 𝑠𝑖𝑛 𝜑, is equal to: 𝑟 𝑃 = 𝜌(𝑐𝑜𝑠 𝜑 𝑖 + 𝑠𝑖𝑛 𝜑 𝑗 + 𝑘𝜌�⃗� ) = 𝜌(𝜌 0 + 𝑘𝜌�⃗� ), while the 
position vector of the center of mass of a ball rolling on a revolving parabolic surface is 
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Fig.3. Kinematic parameters of the nonlinear dynamics of rolling a heavy, homogeneous and 
isotropic ball a* on a revolving parabolic surface, and b* on a revolving biquadratic parabolic surface: 
the velocity of the center of mass of the ball at the point of contact of the rolling ball and the revolving 
surface 
The velocity 𝑣 𝐶  of the center of mass C  of the ball rolling, without sliding, on a revolving 
parabolic surface is the time derivative of its position vector 𝑟 𝐶  and is in the vector form: 
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From this expression (6), for the velocity 𝑣 𝐶  of the center of mass 𝐶  of the ball in rolling, 
without sliding, on a revolving parabolic surface, we see that it has one component 𝑣 𝐶,𝑐 in 
the circular direction orthogonal to the meridional plane through the axis of axis symmetry, 
as well as component 𝑣 𝐶,𝑚 in two vector components in the meridional plane of the 
revolving parabolic surface: 

 �⃐�𝐶,𝑐 = �̇�𝜌 (1 −
2𝑘𝑟

√4𝑘2𝜌2+1
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Using these components   𝑣 𝐶,𝑚 and  𝑣 𝐶,𝑐, the velocity 𝑣 𝐶 of the ball's center of mass C  in 
rolling, without sliding, on a revolving parabolic surface, as well as their squares, we can 
determine the orthogonal component of angular velocities 

mP,


   and 
cP,


 of ball’s 

rolling, without sliding, along curvilinear coordinate lines on a revolving parabolic surface, 
with circles and derivative parabola lines: 

     ( ) ( )222
2

2
3

22
2

2

2

2
,2

:, 411421 


 kkkr
rr

v mC

m +







+−==

−


                     (8) 

                                     
 

2

222

2
2

2

2
,2

,
14

21














+
−==






k

kr

rr

v cC

cP



                                    (9) 

The expressions for the kinetic and potential energy,  
kE   and  

pE , of a ball rolling, without 
slidding, on a revolving parabolic surface, as a function of two independent generalized 
coordinates,  𝜌 and  𝜑, are now (see Ref. [4]): 
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3.2 Kinematic parameters of the nonlinear dynamics of rolling a heavy, 

homogeneous and isotropic ball on a revolving parabolic surface 

Two nonlinear differential equations of the nonlinear dynamics of rolling a heavy, 
homogeneous and isotropic ball on a revolving parabolic surface for independent 
generalized coordinates 𝜌 and 𝜑 are obtained using Lagrange's differential equations of the 
second kind.  If we introduce the rolling coefficient  in the form (see Ref.[4]): 𝜅 =

𝑱𝑃

𝑀𝑟2 =

𝒊𝑃
2

𝑟2 =
𝒊𝐶
2

𝑟2 + 1 , where   𝑱𝑃 is the axial mass inertia moment of the ball for the axis of rolling,  
𝑀  and 𝑟  the mass and radius of the ball, then the derived system of two nonlinear 
differential equations of a rolling, no-slip, heavy homogeneous and isotropic ball on a 
revolving parabolic surface take simple forms. From the second nonlinear differential 
equation in the circular coordinate  , the first integral is obtained in the following form: 
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It is a cyclic integral (12), and the circular coordinate 𝜑 is a cyclic coordinate. Using that 
integral, which was introduced into the first nonlinear differential equation, we eliminate 
the cyclic circular coordinate 𝜑 from it, so that we get a nonlinear differential equation 
with only one independent generalized coordinate 𝜌 in the following form: 
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Expressions for the kinetic and potential energy, (10) and (11), of a ball rolling, without 
slipping, on a revolving parabolic surface, as a function of two independent generalized 
coordinates, 𝜑 and 𝜌, are now in the form ( ) ( ) ( ) ( )00,,,   EconstEEE pk ==+= . 
Then we use the cyclic integral (12), which we enter in the expression for the energy 
integral, and using it, we eliminate the derivative of the cyclic coordinate �̇� from the energy 
integral, so that we get the nonlinear equation, which represents the equation of the phase 
trajectory of the rolling, no-slip, heavy ball on a revolving parabolic surface. We can write 
that equation in the form: 
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By changing the initial positions 𝜌0 and  𝜑0, i.e. the generalized phase coordinate   𝜌0 and 
its time derivative  �̇�0 at the contact point of the ball and the revolving parabolic surface, 
at the initial moment of rolling, without slipping, we draw different phase trajectories by 
equation (13)  in the phase plane (𝜌, �̇�) , on whose axes the generalized independent  
coordinate  𝜌 and its derivative �̇� are positioned,  thus creating a phase portrait of nonlinear 
dynamics of the rolling, no-slip, heavy ball on a revolving parabolic surface. 

3.3  Kinematic parameters of the nonlinear dynamics of the rolling of a heavy, 

homogeneous and isotropic ball on a revolving biquadratic parabolic surface   

Fig. 3b* presents kinematic parameters of the nonlinear dynamics of rolling a heavy, 
homogeneous and isotropic ball on a revolving biquadratic parabolic surface. The velocity 
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of the center of mass of the ball and the point of contact of the rolling ball and the revolving 
biquadratic parabolic surface are visible. 
The velocity  𝑣 𝐶 of the center of mass 𝐶 of the ball rolling, without sliding, on a revolving 
biquadratic parabolic surface is the time derivative of its position vector  𝑟 𝐶  and is in the 
vector form: 
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From this expression (16) for the velocity  𝑣 𝐶 of the center of mass C  of the ball, in rolling, 
without sliding, on a revolving biquadratic parabolic surface, we see that it has one 
component  𝑣 𝐶,𝑐 in the circular direction orthogonal to the meridional plane through the 
axis of axis symmetry, as well as component 𝑣 𝐶,𝑚 in two vector components in the 
meridional plane of the revolving biquadratic  parabolic surface: 
 
For this case of rolling a heavy ball on a biquadratic revolving surface, analogously to the 
contents of chapters 3.1. and 3.2, we can derive a system of two nonlinear differential 
equations, show that there is a cyclic integral as well as a cyclic coordinate, and then derive 
the energy integral and the phase trajectory equation. Generalizations for rolling a heavy 
ball on any revolving surface are also possible. 

4.  THEOREMS ON THE PROPERTIES OF THE NONLINEAR DYNAMICS OF ROLLING A HEAVY 
BALL ON REVOLVING SURFACES     

 
On the basis of the results presented in the previous chapters, we can formulate a series 

of 15  theorems: five theorems about the constructed orthogonal curvilinear coordinate 
system on the revolving surface and ten theorems about the dynamics of rolling, without 
sliding, a heavy homogeneous and isotropic material ball on a revolving  surface (with at 
least one axis of symmetry - sphere, cone, torus, revolving parabolic and biquadratic 
parabolic spheres, as well as general revolving  surfaces - coordinate surfaces of curvilinear 
orthogonal systems of curvilinear coordinates).  

Here are several conclusions, which follow from the contents of the previous chapters, 
and on the basis of which it is easy to formulate all 15 theorems: 

1* two degrees of freedom of the rolling ball, when the ball’s self-rotation is neglected; 
2* one cyclic coordinate in circular direction and one cyclic integral; 
3* the velocity of the center of mass of the rolling ball has two components: one in the 

meridional plane parallel to the tangent to the parabolic/biquadratic parabolic/general 
derivative line of the revolving parabolic/biquadratic parabolic/general  surface on which 
the ball rolls, without slipping, as well as the second component in the circular direction, 
which is in the direction of the tangent to the circle - the curvilinear coordinate line of the 
revolving parabolic/biquadratic parabolic/general  surface; 
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4* two components of the angular velocity of ball rolling, without slipping: 1. angular 
velocity of rolling without sliding, along the parabolic/biquadratic parabolic/general  
derivative of the revolving surface, and around the current axis of rolling through the point 
of current contact between the ball and the revolving surface, perpendicular to the 
meridional plane, and tangential in the circular direction on the circular coordinate line of 
the revolving surface and 2. angular velocity of rolling, without slipping, along the circular 
coordinate line of the revolving parabolic surface, and around the current axis of rolling 
through the point of instant contact between the ball and the revolving surface, 
perpendicular to the parabolic derivative of the revolving parabolic/biquadratic 
parabolic/general  surface, and at an angle in relation to the plane of the coordinate circle 
of the revolving surface through the momentary contact point of the ball and the revolving 
surface - in the direction normal to that surface; 

5* the instantaneous axes of the component rolling of the ball in the component rolling 
along the circular coordinate line lie on the coordinate conical surface; 

6* the coordinate surfaces of the revolving parabolic/biquadratic parabolic/general 
surface on which the ball rolls, without slipping, are the revolving parabolic/biquadratic 
parabolic/general surface, the system of conical surfaces on which lie the normal to the 
base revolving surface and its meridional planes across its axis of symmetry. Coordinate 
lines are parabolas/biquadratic parabola/general lines, circles and cone derivatives - normal 
to the revolving surface; 

7* energy integral; 
8* two nonlinear differential equations of nonlinear dynamics of the rolling ball; It is 

possible to obtain a cyclic integral and one nonlinear differential equation expressed by 
only one independent generalized coordinate, which is not a cyclic coordinate. 

9* a nonlinear equation of phase trajectories expressed by only one independent 
generalized coordinate, which is not a cyclic coordinate. 

Due to the spatial limitations, we will only list one set of formulated theories. 
Theorem 1. Fringed (Bounded) cones as coordinate surfaces of an orthogonal curvilinear 
coordinate system of a revolving surface occur when the revolving surface is formed by 
rotating a curved line with two or more minima in pairs. If the revolving surface has two 
minima, two series of coordinate surfaces appear as coordinate surfaces, one series in the 
form of cones and the other in the form of fringed cones. If the revolving surface has four 
minima, three series of coordinate surfaces, one in the form of a cone and two series of 
fringed cones, appear as coordinate surfaces. 
Theorem 2. The velocity    𝑣 𝐶 of the center of mass C  of a rolling ball, without slipping, 
has two components  𝑣 𝐶,𝑚 and 𝑣 𝐶,𝑐: one  𝑣 𝐶,𝑚 in the meridional plane, parallel to the tangent 
�⃗�  to the derivative of the revolving  parabolic (or general revolving) surface on which the 
ball rolls, and the other component 𝑣 𝐶,𝑐 in the circular direction  𝑐 0 = −𝑠𝑖𝑛 𝜑 𝑖 + 𝑐𝑜𝑠 𝜑 𝑗 , 
which is in the direction tangent to the circle - the curvilinear coordinate line of the 
revolving parabolic (or general revolving) surface. 
Theorem 3. Using the components 𝑣 𝐶,𝑚 and    𝑣 𝐶,𝑐  , velocity  𝑣 𝐶  of the center of mass  𝐶 
of the ball rolling, non-sliding, on a revolving parabolic (or general revolving) surface as 

well as their squares, we can determine the component angular velocities  
mP,


 and   

cP,


 
of component rolling, non-sliding, balls on curvilinear coordinate lines on a revolving 
parabolic (or general revolving) surface: circles  𝑧 = 𝑐𝑜𝑛𝑠𝑡 and parabolas or corresponding 
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curvilinear coordinate 𝜑 = 𝑐𝑜𝑛𝑠𝑡 to derivatives of revolving parabolic (or general 
revolving) surface. 8.1 * Angular velocity 

mP,


 of the component rolling along the 
coordinate line of the parabola - derivatives of the revolving parabolic surface, represented 
by a vector perpendicular to the meridional plane, with the current axis of rolling in the 
circular direction 𝑐 0 = −𝑠𝑖𝑛𝜑𝑖 + 𝑐𝑜𝑠 𝜑 𝑗 , orthogonally directed to the meridional plane. 8. 

2 * The component angular velocity cP,


 of the roll, along a circular coordinate line, 
represented as a vector, is in the direction of the tangent to the corresponding parabolic 
coordinate line. The roll component, with the current roll axis, is in the direction of the 
normal determined by the unit vector �⃗� =

1

√4𝑘2𝜌2+1
(−2𝑘𝜌𝜌 0 + �⃗� ). This normal is 

perpendicular to the coordinate revolving surface of revolution and is not in the planes of 
the corresponding coordinate circle lines. It lies in the meridional plane at an angle 𝛼(𝜌) 
with respect to the plane of the corresponding coordinate circle line and is always in the 
direction of one of the derivatives of the coordinate cones. The tangent of the angle 𝛼(𝜌) 
of inclination with respect to the surface of the corresponding coordinate circle is given 
by 𝑡𝑔𝛼(𝜌) = 𝑧 ′ = 𝑓 ′(𝜌) = 2𝑘𝜌. 
In the case of such chosen independent generalized coordinates 𝜑 and 𝜌, introducing the 
expression for the derivative of the cyclic coordinate from the cyclic integral into the 
nonlinear differential equation obtained by the independent generalized coordinate, we 
obtain a nonlinear differential equation in the coordinate 𝜌, which contains only the 
coordinate 𝜌. 

5. CONCLUDING REMARKS      

The series of ten theorems on the rolling, without sliding, of a heavy, homogeneous, 
isotropic ball on revolving surfaces, using a mathematical analogy [5], can also be applied 
to the movements of a heavy material point on revolving surfaces, where it is previously 
introduced that the radius of the ball (material particle) is equal to zero. 

When selected, in both systems, the circular coordinate and the radial coordinate of the 
qualitative analogy (see Ref. [5]) proceed between the following kinetic parameters: in 
both systems, there are two degrees of freedom of movement, i.e. rolling by neglecting 
one's own rotation; a circular coordinate is a cyclic coordinate and it has a cyclic integral 
by that coordinate; in both dynamics the nonlinear differential equation in the radial 
coordinate is of the same type. The equations of the phase trajectories in both dynamics are 
analogous. 
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