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Abstract. This paper investigates the selection of cross-sectional shapes for beams 
based on the theory of elastic bending and the shapes of elastic curves under various 
forms, intensities, and distributions of loads on beams with different boundary 
conditions. Choosing the cross-section profile shape of a bent beam is crucial for 
optimizing its performance under various loading conditions. Different shapes offer 
varying levels of efficiency in terms of strength, stiffness, and material usage. The 
linear elastic theory of bending is utilized to derive the differential equation of the 
elastic curve for bent beams. By solving this second-order differential equation using 
the direct integration method and the Clebsch procedure, the elastic curves are 
obtained. Various loading positions and scenarios are analyzed for overhanging and 
cantilever elastic beams, demonstrating the correlation between beam bending 
stiffness, shape factor, and degree of utilization of the cross-sectional shape. We apply 
the criterion of ultimate bending strength (flexural strength) of steel for dimensioning 
beams. Thus, the characteristic dimension of the profile is determined according to the 
maximum value of the bending moment for each type of beam, considering the values 
and distribution of the load. For the same bent beam and loading values, different 
cross-section profiles are suggested, and the maximal deflection in each case is 
obtained. Based on these findings, the best choice for profile selection is considered. 
The study also examines the relationship between shape factors and the degree of 
utilization of the cross-section, and the concept of the ideal shape of beams with 
variable stiffness along their length. The results provide insights into the optimal 
selection of cross-sectional shapes for beams subjected to bending, helping engineers 
and designers develop a sense for the most efficient selection of cross-sectional shapes. 
 
Key words: Overhanging elastic beam, Cantilever beam, Flexural rigidity, Cross-
sectional shape, Bending shape factor.  
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1. INTRODUCTION 

 
The study of beam bending and the selection of optimal cross-sectional shapes is a 

critical area in structural engineering, with significant implications for the design and 
performance of various structures. Previous research has extensively explored the theory 
of elastic bending and the behavior of beams under different loading conditions. 

Research by Simonović et al. [1] provided a comprehensive analysis of elastic beam 
deformation, emphasizing the importance of integration constants in their study of elastic 
curves. Their work laid the groundwork for understanding the mathematical foundation 
of beam bending, which is crucial for our study's theoretical framework. They focused on 
interpreting integration constants within the framework of linear bending theory, 
examining their physical significance in explaining beam deformations under various 
loads. In engineering practice, it is crucial to comprehend the solutions generated by 
software that uses approximate methods. Simonović et al. aimed to connect practical 
engineering solutions with the underlying meaning of the results. Achieving this requires 
a solid physical understanding of all the terms in mathematical models and their 
solutions. 

Building on this, Bíró et al. [2] developed a numerical method to determine the elastic 
curve of beams with variable cross-sections. This method is instrumental in our study, as 
it allows us to analyze beams with non-standard cross-sectional shapes and varying 
configurations. They addressed the boundary value problem by transforming it into an 
initial value problem using a special application of the shooting method, achieving high 
accuracy in obtaining the initial values of the differential equations. Their numerical 
results from [2] showed good agreement with analytical solutions and finite element 
method (FEM) results, providing a strong foundation for using modern numerical 
methods to derive solutions for complex loading scenarios. 

Fredriksson and Mercier, in case study [3], examined material properties and 
structural sections, highlighting the role of shape factors in optimizing beam 
performance. Their findings on shape factors are crucial for our analysis of cross-
sectional shapes, helping us understand the relationship between material properties and 
beam stiffness. They demonstrated in [3] that advanced numerical methods, such as FEM 
or finite difference method (FDM), simplify the problem by discretizing the beam into 
smaller segments or elements, making them computationally efficient and capable of 
handling complex geometries and loading conditions. 

The significance of our research lies in its comprehensive approach to analyzing the 
optimal cross-sectional shapes for beams subjected to bending. By deriving the 
differential equation of the elastic curve and solving it for various beam configurations, 
we have established a clear correlation between beam bending stiffness, shape factor, and 
the degree of utilization of the cross-sectional shape. This study not only builds on the 
foundational work of previous researchers but also provides new insights into the 
practical application of these theories in structural design. 

Our work is particularly important because it addresses the practical challenges faced 
by engineers and designers in selecting the most efficient cross-sectional shapes for 
beams. By applying the ultimate bending strength criterion for dimensioning beams, we 
have determined the characteristic dimensions of profiles according to the maximum 
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bending moment for each type of beam. This practical approach allows engineers to 
select the most efficient cross-sectional shapes based on real-world loading conditions. 

Our current research builds on these understandings and adds new value to help 
engineers in their structural tasks. By providing detailed analysis and practical guidance, 
we aim to enhance the design and optimization of beams subjected to bending, ensuring 
both optimal performance and practical feasibility in structural applications. 

We conducted a numerical analysis on elastic beams of varying configurations, 
revealing critical insights into their performance under different loading scenarios. This 
analysis included cantilevered beams subjected to continuous and discrete forces, as well 
as overhanging beams with eccentric loads. Our study demonstrates that the standard I 
profile is the most optimal cross-sectional shape for beams subjected to bending, offering 
a utilization degree that is significantly better than non-standard profiles. This finding 
provides practical guidance for engineers and designers in selecting the most efficient 
cross-sectional shapes for beams. Contrary to the traditional approach, where the material 
or structural element (profile) is chosen by trial method or based on previous experiences, 
in modern engineering, the method of multi-criteria analysis is increasingly adopted for 
proper and optimal selection. 

The present paper begins with the theoretical foundations, introducing the 
fundamental concepts of bending, including pure bending and bending by forces, and 
discussing the criterion of ultimate bending strength for dimensioning beams. Here, we 
also underline the parameter that defines the efficiency of the cross-sectional area in 
bending. In the third section, we move on to the analytical calculation of the ideal shape 
of beams, focusing on the variation of the section modulus along the beam's length and 
the practical implications of producing beams with variable cross-sections. The fourth 
section contains numerical analysis, where we examine the performance of beams with 
various supports and loading scenarios. This section includes a series of images of elastic 
curves obtained using the Clebsch procedure and the tables with data on the maximum 
deflections of different beams, adequately suggesting the choice of standard or non-
standard cross-sectional shapes. Finally, the conclusion summarizes the key findings of 
our study, emphasizing the importance of selecting the optimal cross-sectional shape for 
beams subjected to bending and providing practical guidance for engineers and designers. 

By providing a detailed analysis of different cross-sectional profiles under the same 
loading conditions, our study offers valuable insights into the maximal deflection and the 
most efficient profile selection. This research not only enhances our understanding of 
beam bending behavior but also provides practical solutions for optimizing structural 
performance in various applications. 

2. ELEMENTS OF ELASTIC BENDING 

Bending is a type of stress characterized by the longitudinal axis or the middle line (in 
the case of curved beams) changing shape under the influence of load, resulting in 
deflection and slope relative to the initial position in the undeformed state. The shape of 
the curve describing the middle line of the beam in the deformed state is called the elastic 
curve of the beam. Mathematically, the elastic curve is the geometric locus of the 
deflection points 𝑦(𝑧) of the beam for the corresponding longitudinal coordinate 𝑧. The 
slopes are the slopes of the tangent to the elastic curve and are mathematically the first 
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derivatives of the function describing the elastic line  𝑦′(𝑧). The method of direct 
integration for obtaining the equation of elastic curves is discussed in detail in paper [1]. 

As in [4], we also distinguish specific cases of bending such as: 
 Pure bending, where only the applied bending moment 𝑀௙  causes normal 

stresses 𝜎௙ (Fig. 1 b) and corresponding deformations; 
 Bending by forces, where transverse forces 𝐹௧  cause shear stresses 𝜏௙ (Fig. 1 a), 

and applied moments 𝑀௙  cause normal stresses 𝜎௙ (Fig. 1 b) and corresponding 
deformations, deflections, and slopes. 

 

Fig. 1 Cross-sectional forces of bent profile, [4] 

In the present study, we apply the criterion of the ultimate bending strength (flexural 
strength 𝜎ௗ௙) of steel for dimensioning beams, [4]. According to this criterion, the 
bending stress must be less than the ultimate bending strength: 

𝜎௭ =
𝑀௠௔௫(𝑧)

𝑊௫

≤ 𝜎ௗ௙ ,                                                              (1) 

where the elastic section modulus is 

𝑊௫[𝑐𝑚ଷ] =
𝐼௫

𝑦௠௔௫

 .                                                              (2) 

We also refer to it as the bending resistance moment, and it represents the geometric 
characteristic of the cross-section with the dimension of length to the third power [𝐿ଷ], 
for which the units [𝑐𝑚ଷ], [𝑚𝑚ଷ], or [𝑚ଷ] can be used. From Eq. (1), it can be 
concluded that when dimensioning beams for bending, the bending resistance moment 
𝑊௫  must be greater than or equal to the ratio of the maximum bending moment 𝑀௠௔௫(𝑧) 
and the flexural strength  𝜎ௗ௙ for the given beam material:  

𝑊௫ ≥
|𝑀|௠௔௫

𝜎ௗ௙

 .                                                              (3) 

The elastic section modulus 𝑊௫   depends on the shape of the cross-section, with direct 
proportionality to the moment of inertia 𝐼௫ for the axis around which the beam bends 
(neutral axis), and inversely proportional to the maximum distance of the edge fibers of 
the cross-section from the neutral axis 𝑦௠௔௫ .  

The main task of the designer when dimensioning beams is to shape a non-standard or 
select a standard cross-section, thereby achieving the minimum material consumption 
(thus the minimum weight of the structure) with economical use of labor during the 
construction and assembly of the structure. Most often, to achieve this, dimensioning 
should be done in relation to the dominant (largest) dimension of the cross-section. 

Given definition (2), it can be written as: 

b) а) 
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             𝑊௫ =
1

𝑦௠௔௫

න 𝑦ଶ

஺

𝑑𝐴 = 𝑦௠௔௫ න ൬
𝑦

𝑦௠௔௫

൰
ଶ

஺

𝑑𝐴 < 𝑦௠௔௫ ∙ 𝐴,                     (4) 

since it is true for most points of the cross-section that (𝑦/𝑦௠௔௫) < 1. 
The elastic section modulus 𝑊௫ of the cross-section is equal to 𝑊௜ = 𝑦௠௔௫ ∙ 𝐴 only in 

the case when the section consists of two narrow strips (two flanges) at a distance 𝑦௠௔௫, 
which corresponds to the ideal cross-section and its ideal resistance moment 𝑊௜ , as 
shown in Fig. 2.  

Fig. 2 a) The efficiency of the cross-sectional area in bending; b) diagram of distribution 
of normal stresses across the cross-section; c) the bending ideal cross-section; d) diagram 

of ideal distribution of normal stresses across the bending ideal cross-section; e) non-
standard I profile, [4] 

The ideal section modulus for the example in the figure is: 𝑊௜ = 𝑦௠௔௫ ∙ 𝐴 =
ଵ

ଶ
𝐴 ∙

ℎ. However, for the beam to be a structural unit, the flanges must be connected by a 
vertical web, so the actual section modulus is less than the ideal 𝑊௫ < 𝑊௜, because it is 
always true for points on the web that (𝑦/𝑦௠௔௫) < 1. The ratio of the actual to the ideal 
section modulus is called the degree of utilization of the cross-section: 

𝜂 =
𝑊௫

𝑊௜

=
2 ∙ 𝑊௫

𝐴 ∙ ℎ
< 1.                                                              (5) 

For the non-standard I and U profiles, Fig. 3 b) and c), which have: 𝑊௫[𝑐𝑚ଷ] =
ூೣ

௛ ଶ⁄
=

௛య

଺
[1 − (1 − 2𝜓)ଷ(1 − 𝜓)], with the thickness-to-width ratio   𝜓 = 𝛿 ℎ⁄ ,  the deegre of 

utilization of the cross-section is: 

𝜂 =
𝑊௫

𝑊௜

=
[1 − (1 − 2𝜓)ଷ(1 − 𝜓)]

3 ∙ [1 − (1 − 2𝜓)(1 − 𝜓)]
= 0.53 . 

For the non-standard hollow square profiles, Fig. 3.a), which has elastic section 
modulus: 

                                                     𝑊௫[𝑐𝑚ଷ] =
𝐼௫

ℎ 2⁄
=

ℎଷ

6
[1 − (1 − 2𝜓)ସ],                         (6) 

 with the thickness-to-width ratio   𝜓 = 𝛿 ℎ⁄ = 0.2,  the deegre of utilization of the 
cross-section is: 

d) b) а) c) e) 
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𝜂 =
𝑊௫

𝑊௜

=
[1 − (1 − 2𝜓)ସ]

3 ∙ [1 − (1 − 2𝜓)ଶ]
= 0.453 . 

Thus, we conclude that the degree of utilization is 16.97% higher for non-standard U 
and I profiles compared to the hollow square. 

 

 

 

 

Fig. 3 Selection of non-standard profiles: a) hollow square profile; b) the I and c) U 
profile; d) a thin-walled tubular profile.  

For a thin-walled tubular beam, cross-section in Fig. 3.d), which has  𝑊௫[𝑐𝑚ଷ] =
ூೣ

௛ ଶ⁄
=

௛యగ

ଷଶ
[1 − 𝜓ସ] with the radius ratio  𝜓 = ℎ1 ℎ = 0.8⁄ ,  the deegre of utilization of 

the cross-section ring is: 

𝜂 =
1 − 𝜓ସ

4 ∙ [1 − 𝜓ଶ]
= 0.41 . 

Thus, we conclude that the degree of utilization is 29.33% better for non-standard U 
and I profiles compared to the thin-walled hollow tube of the same thickness. 

However, using formula (5), one can easily obtain that the standard (DIN 1026) U 
profile has a degree of utilization of cross-section 𝜂௎ = 0.595, and the standard (DIN 
1025) I profile has a value of 𝜂ூ = 0.64. The standard U profile has a utilization degree 
that is 12.26% better than the non-standard U or I profile with η = 0.53. The standard I 
profile has a utilization degree that is 20.75% better than the non-standard U or I profile. 
The profile with the best utilization degree of the cross-section is the standard I profile, 
making it the preferred choice. 

When selecting the most favorable profile, the degree of utilization of the profile 
cross-section actually provides the characteristic of the best distribution of the cross-
sectional area in relation to the neutral axis, the axis around which bending occurs. 
Ideally, the distant flanges, Fig. 2 c), from the axis around which the beam bends are the 
best in terms of dimensioning the beam according to the criterion of ultimate bending 
strength. 

Other criteria can also be used for dimensioning. For example, the allowable 
maximum deflection value can also be decisive. Since the deflection value is inversely 
proportional to the bending stiffness (flexural rigidity) of the beam, beams with greater 
stiffness will perform better in dimensioning. They will have a smaller deflection value 
for the same load. In this sense, it is appropriate to define the shape factor for elastic 
bending, which gives the ratio of the stiffness of profiles made of the same materials to 
the stiffness of a solid circular cross-section profile. 

For a circular cross-section with radius 𝑟, the axial moment of inertia about the axis 
around which the beam bends is given by: 𝐼௫⨀ = 𝜋𝑟ସ/4 = 𝐴ଶ/4𝜋. 

 

d) 

h 

h 

 h 

h 

h  h 

h 

 

b) а) c) 
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If  𝕭  is the stiffness for another shape with the same cross-sectional area, made of the 
same material and subject to the same loading, then the shape factor for elastic bending is 
defined as: 

𝜙௙ =
𝕭

𝕭⊙
=  

𝐸 𝐼௫

𝐸𝐼௫⨀
= 4𝜋

𝐼௫

𝐴ଶ
 .                                                              (7) 

The shape factor 𝜙௙  is dimensionless, meaning it is a pure number that characterizes 
the cross-sectional shape relative to a circular cross-section. In practice, the shape factors 
range from around 1 up to around 100. Note that the size of the section (𝐴) does not 
affect the shape factor if scaled proportionally. Here, a solid circular cross-section is 
taken as the reference shape, but the shape factor can also be considered with a solid 
square cross-section as the reference: 

𝜙௙ =
𝕭

𝕭⊡

=  
𝐸 𝐼௫

𝐸𝐼௫⊡

= 12
𝐼௫

𝐴ଶ
 .                                                            (8) 

The shape factor during elastic bending of a square cross-section relative to a circular 
cross-section of the same area is: 

𝜙௙ =  
 𝐼௫⊡

𝐼௫⨀

=
𝐴ଶ/12

𝐴ଶ/4𝜋
=

4𝜋

12
= 1.05. 

Therefore, a square cross-section is about 5% stiffer than a circular cross-section. 
For a tubular beam with radius 𝑟 and wall thickness 𝛿 where 𝑟 ≫ 𝛿, the area is 𝐴 =

2𝜋𝑟𝛿 and axial moment is 𝐼௫⊚ = 𝜋𝑟ଷ𝛿, thus the shape factor during elastic bending of a 
tubular beam relative to a circular cross-section of the same area is: 

𝜙௙ =  
 𝐼௫⊚

𝐼௫⨀

= 4𝜋
𝜋𝑟ଷ𝛿

(2𝜋𝑟𝛿)ଶ
=

𝑟

𝛿
 . 

Therefore, a thin-walled tubular beam with  𝑟 = 10𝛿 is 10 times stiffer than a circular 
cross-section beam of the same area. The same applies to an I-beam. Instead of a square 
beam, it is approximately 10 times more efficient in bending stiffness [3]. By using the 
definition of 𝜙௙ and the values of 𝐼௫ and 𝐴 for the individual sections in the data-table, it 
is possible to plot an overview of shape factors, Fig. 4 that is taken from [3]. In Fig. 4, 
pultruded GFRP (Glass Fiber Reinforced Polymer) refers to a manufacturing process 
where continuous strands of glass fibers are impregnated with a polymer resin and then 
pulled through a heated die to form a composite material. This process creates strong, 
lightweight profiles that are used in various applications, such as construction, 
transportation, and industrial components. Pultruded GFRP is known for its high 
strength-to-weight ratio, corrosion resistance, and durability, making it an excellent 
choice for structural applications. Hot rolled tee sections, also known as T-bars, are 
structural steel profiles with a "T" shape. They are produced by hot rolling, a process 
where steel is heated above its recrystallization temperature and then shaped. These 
sections are commonly used in construction and industrial applications due to their 
strength and durability. The top part of the "T" (flange) provides resistance to 
compressive stress, while the vertical part (web) resists shear and bending forces. Hot 
rolled tee sections are easy to weld, cut, form, and machine, making them versatile for 
various projects. Also, the glulam, or glued-laminated timber, is an engineered wood 
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product made by bonding together layers of dimensional lumber with durable, moisture-
resistant adhesives. When made from softwood species, glulam combines the natural 
beauty and strength of wood with enhanced structural capabilities. Softwood glulam is 
commonly used for beams and columns in both residential and commercial construction. 
It is known for its high strength-to-weight ratio, making it suitable for long spans and 
heavy loads. Additionally, glulam can be manufactured in various shapes and sizes, 
including curved and pitched forms, allowing for versatile design applications. In Fig. 4, 
one can also notice the position of the shape factor for a hot rolled steel joist. It is often 
referred to as a Rolled Steel Joist (RSJ) or an I-beam and is a structural steel component 
with an 'I' or 'H' shaped cross-section. These joists are produced by heating steel above its 
recrystallization temperature and then shaping it through rolling processes. Hot rolled 
steel joists are widely used in construction and civil engineering due to their strength, 
durability, and ability to support heavy loads. They are commonly used in building 
frameworks, bridges, and other structures where high load-bearing capacity is required. 
The design of these joists allows them to resist bending and shear forces effectively, 
making them ideal for various structural applications. 

Using a plot, Fig. 4, of the moment of inertia versus section area, one can compare 
most of the commercially available structural shapes made from different materials. 

Considering the relationship given by equation (2) as well as the definitions of the 
degree of utilization of the cross-section (5) and the section factor (8), it is not difficult to 
establish a connection between these dimensionless characteristics of the cross-section:  

𝜙௙ = 3 ∙ 𝜂 ∙
ℎଶ

𝐴
.                                                              (9) 

Using formula (9), or (8) one can easily obtain that the standard (DIN 1026, [5]) U profile 
has a section factor  𝜙௙௎ = 10.385, and the standard (DIN 1025, [5]) I profile has a value 
of 𝜙௙ூ = 18.113. Note that the size of the section (𝐴) does not affect the shape factor if 
scaled proportionally. 
 

Fig. 4. An overview of shape factors [3]. 
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Therefore, all standard profiles of the same shape have the same shape factor. 
Regardless of the criteria used for dimensioning the bending of the beam, this analysis 
shows that the standard I profile is optimal both in terms of stiffness and in terms of the 
utilization of the cross-sectional area. 

A necessary step in optimizing bent beams is the reduction of mass, and the shape 
factor can be utilized in these calculations. In order to derive a performance index that 
includes both material and shape, we can use an I-bar in bending. Using stiffness-limited 
design, the authors in [3] assume a lower limit of the bending stiffness as a constraint and 
take as an objective to minimize mass. Taking into account both the type of material and 
the shape factor and optimizing the mass by using performance index, the study [3] has 
shown that extruded aluminum and softwood planks perform the best in that overview.  

Similarly, just as the shape factor for elastic bending can be defined, Eqs. (6) or (7), 
the shape factor for elastic torsion can also be established. When both bending and 
torsion are present, the criteria for material and shape selection become more complex. 
This complexity allows designers to use multiple critical parameters as optimization 
factors. 

Ultimately, the experience of the designer and the availability of material resources 
play a crucial role in the final selection of the profile. In conclusion, while theoretical 
optimization provides a strong foundation, practical considerations and the designer's 
expertise are essential in making the final decision. This holistic approach ensures that 
the selected profile meets both performance and practical requirements effectively. 

In the next section, we will demonstrate the technique for selecting the ideal shape of 
a beam along its length. Such beams have variable stiffness along their length, and their 
fabrication can be demanding. Our goal is to show that the shape of the elastic line 
determines the ideal shape of a beam with ideal shape and variable stiffness per length. 

3. IDEAL SHAPE OF BEAMS SUBJECTED TO BENDING 

If a beam is subjected to transverse forces, the normal stress changes depending on 
the position of the cross-section as a function of the coordinate 𝑧, but it also changes at 
every point of the cross-section as a linear function of the coordinate 𝑦, as shown in Fig. 
2 b). For a given cross-section, the largest normal stress is the edge stress. If the ideal 
shape of the beam is sought, then for such a beam, the edge normal stress should be equal 
in all cross-sections (for every 𝑧). This condition is easily met in the case of pure 
bending, detailed observed in [1, 4], because the bending moment is constant in every 
section 𝑀௙ = 𝑀 = 𝑐𝑜𝑛𝑠𝑡. In the case of a beam loaded with forces, the cross-section, i.e., 
its section modulus 𝑊௫(𝑧), must change so that the following relationship holds: 

𝜎௙௠௔௫ =
𝑀(𝑧)

𝑊௫(𝑧)
= 𝜎ௗ௙ .                                                              

Based on the previous expression, the criterion for dimensioning a beam of ideal 
shape according to the maximum bending moment and the flexural strength  𝜎ௗ௙  is: 

𝑊௫(𝑧) =
𝑀(𝑧)

𝑀௠௔௫

𝑊௫ = 𝑓(𝑧).                                               (10) 

Thus, the beam subjected to bending, having an ideal shape, has a sectional modulus that 
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varies as a function of the longitudinal 𝑧  axis of the beam. 

           

Fig. 5 Ideal shape of a) a simple beam and b) a cantilever beam of circular cross-section, 
[4]. 

 
Let us consider some characteristic cases of the ideal shape: a) a simple beam with a 

circular cross-section loaded with a concentrated force at the middle, Fig. 4a); and b) a 
cantilever beam with a circular cross-section loaded with a concentrated force at the free 
end, Fig. 4 b). 

 Considering (10) the section modulus for a simple beam with a circular cross-section, 
Fig. 4 a), is: 

                  𝑊௫(𝑧) =
𝑑ଷ(𝑧) ∙ 𝜋

32
=

1
2

𝐹 ∙ 𝑧

1
4 𝐹 ∙ 𝑙

∙
𝑑଴

ଷ ∙ 𝜋

32
,                                               

from which it follows that the diameter of the cross-section changes according to the law 
of the cubic parabola in the case of a simple beam with a force at the middle: 

𝑑(𝑧) = 𝑑଴ ∙ ඨ
2𝑧

𝑙

య

.                                                                     

In the case of a cantilever beam with a circular cross-section loaded with a 
concentrated force at the free end, Fig. 4 b), the section modulus is given by the 
expression: 

𝑊௫(𝑧) =
𝑑ଷ(𝑧) ∙ 𝜋

32
=

𝐹 ∙ 𝑙 ቀ1 −
𝑧
𝑙
ቁ

𝐹 ∙ 𝑙
∙

𝑑଴
ଷ ∙ 𝜋

32
,                                         

from which it follows that the diameter of the cross-section of the cantilever changes 
according to the law of the cubic parabola in the form: 

𝑑(𝑧) = 𝑑଴ ∙ ට1 −
𝑧

𝑙

య
.                                                          

b) а) 
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For beams with a rectangular cross-section, we choose one of the two dimensions of 
the rectangle, usually the larger one, to optimize it from the standpoint of the ideal shape. 
The production of beams with an ideal shape is demanding in terms of manufacturing 
technology and cost, so it is applied only in cases where it is effective.  

When a beam with a variable cross-section along its length is produced, it is possible 
to use the same tools of elastic bending theory [1, 4] to determine the equation of the 
elastic curve for such beams. However, the exact solutions of the differential equation of 
the elastic curve for these beams are complex, so numerical tools are employed. The 
paper [2] presents an approach to calculating the equation of the elastic line and the code 
for beams with variable cross-sections along their length. 

In the next chapter, we will present the results of a numerical experiment in which the 
elastic curves of beams with various boundary conditions and loads were obtained. These 
solutions were used to select the most favorable cross-sectional shape. The shapes of the 
elastic lines were plotted for various standard and non-standard profiles. The results and 
conclusions, together with the previously presented theoretical considerations, can help 
engineers and designers develop a sense for the most efficient selection of cross-sectional 
shapes for beams subjected to bending. 

4. NUMERICAL RESULTS AND DISCUSSION 

The examples of elastic beams examined in this section represent beams with various 
supports and loading scenarios. Starting with the example of a cantilevered beam 
subjected to continuous loading and discrete forces, followed by overhanging beams with 
or without eccentric axial loading, we apply the Clebsch procedure described in the 
papers [1, 4] to present the elastic curves for different standard and non-standard cross-
sectional shapes. For all cases, we apply the criterion of the ultimate bending strength, 
Eq. (3), with flexural strength 𝜎ௗ௙ = 10 [𝑘𝑁/𝑐𝑚2] of steel for dimensioning beams. 
Considering the elastic section modulus (6) for non-standard hollow square profiles, Fig. 
3.a), the expression for obtaining the dimension of height ℎ becomes: 

                                              ℎ[𝑐𝑚] ≥ ඨ
6 ∙ 𝑀௠௔௫(𝑧)

𝜎ௗ௙ ∙ [1 − (1 − 2𝜓)ସ]

య

                                              

Therefore, the characteristic dimension of the profile, specifically the height h, is 
determined based on the maximum value of the bending moment 𝑀௠௔௫(𝑧). A similar 
expression can be derived for the representative dimension of any other non-standard 
profile shown in Fig. 3. Thus, the value of the maximum bending moment 𝑀௠௔௫(𝑧) for 
each type of beam, considering the values and distribution of the load, is crucial for 
profile dimensioning. When dimensioning standard profiles, the same criterion and 
expression (3) are used. Profiles are selected from the corresponding standard tables, for 
example [5], choosing those with an elastic section modulus value that is the first greater 
than the one calculated from ratio |𝑀|௠௔௫ 𝜎ௗ௙⁄ . It turns out that for appropriate 
dimensioning, it is not only important to consider the degree of utilization of the cross-
section (5) or the value of the section factor (7), but also the ratio |𝑀|௠௔௫ 𝜎ௗ௙⁄ . This ratio 
depends on the maximum value of the bending moment 𝑀௠௔௫(𝑧), which is determined 
by the type and distribution of the loading and supports, and material strength defined by 
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flexural strength 𝜎ௗ௙. Although, as already concluded, the standard I profile with the best 
utilization degree of the cross-section is the preferred choice for bent beams, and some  

 

Fig. 6 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) represents the deflection values along the 
cantilever beam for different scenarios of loading values and combinations. The 

cantilever beam has standard IN, UPN and 2UPN profiles and nonstandard profiles (1, 2, 
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3, 4) with   𝛿 ℎ⁄ = 0,2 and total beam length of 𝐿 = 4𝑎 = 4 [𝑚]  

contemporary materials have high shape factors (Fig. 4), the ultimate choice of profile 
considers all these relations. The optimal cross-section shape can be suggested based on 
the knowledge of all these factors.  

Once the elastic curve is obtained, the value of the maximum deflection is calculated 
numerically for each case and presented along with the chosen profile. This allows us to 
determine which of the examined profiles yields the minimal deflection values. Through 
such analysis, we are also able to suggest the best profile considering the minimal 
deflection values. 

Intuitively, and as concluded in [1, 4], the orientation of the deflection depends on the 
direction of the applied load. So, that in all diagrams that follow in this chapter, the 
negative sign of deflection is mathematically below the zero axis. However, in the 
interpretation of deflection orientation, it is clear that negative orientations are deflections 
from the upper side of the zero line. Physically, this means that loads acting from top to 
bottom cause downward deflections, which we consider positive deformations. 
Deflections are actually turned upwards and represent negative values with a minus sign 
mathematically. Therefore, all images represent a sketch of the elastic curve, which is 
physically rotated 180 degrees around the zero axis. This is easy to observe in the case of 
a cantilever beam (Fig. 6), where we change the direction of the discrete force and 
continuously distributed loading.  

The results from Figs. 6 and Table 1 clearly confirm that standard profiles yield lower 
deflection values compared to non-standard profiles, regardless of the orientation or 
magnitude of the load. The deflection values for standard profiles are presented with 
solid-colored lines in Figs. 6, while those for non-standard profiles are shown with 
dashed lines. Regarding non-standard profiles, a solid circular profile (Profile 4 in Table 
1 and Figs. 6, yellow dashed line) shows the lowest values of deflection among all non-
standard profiles. However, the deflection values for this best non-standard profile are 
nearly twice as high as those for standard profiles, Table 1. For standard profiles, the 
value of maximum deflection depends on the load orientation. In some cases, the U 
profile shows lower maximum deflection values, Fig. 6 b) and Table 1, while in others, 
the 2U profile has smaller deflection values, Figs. 6 a) and 6 c).    
On the other hand, if the criterion is the lesser mass of the beam 𝑀 = 𝜌 ∙ 𝐿 ∙ 𝐴, the profile 
with a lower cross-section area 𝐴 is a better choice. For instance, even though profile 
IN220 has a maximum deflection value of 𝑓௠௔௫ =  1.4924[𝜇𝑚], which is greater than 
profile UPN 240 (𝑓௠௔௫ = 1.2685[𝜇𝑚]), as shown in Table 1, it has a smaller area 
(𝐴ூଶଶ଴ = 39,5 [𝑐𝑚ଶ]) compared to the U profile (𝐴௎ଶସ଴ = 42,3 [𝑐𝑚ଶ]), chosen for the 
same load value, beam length, and material density. Therefore, if the optimization 
criterion in this case is the weight of the structure, we would choose the I profile. 
However, if the limiting factor is the maximum deflection, we would select the U profile. 
As we can see, this is not a general case but only applies to this specific arrangement, 
direction, and type of loading, Table 1. and Fig.6 b).  
How different types of loading affect the selection of the most suitable cross-section 
profile can be examined from Fig. 7 and Table 2. The left-hand side of Fig.7 presents a 
cantilever beam with only continuously distributed loading, without discrete forces, while 
the right-hand side shows a case with discrete forces only. For non-standard profile in 
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any case a solid circular profile (Profile 4 in Table 2 and Figs. 7, yellow dashed line) 
shows the lowest values of deflection among all non-standard profiles. 
 
 

Table 1 The maximal deflection values along the cantilever beam, (𝑦 (𝑧) = 𝑓[𝑚]) for 
different standard and nonstandard profiles and for different scenarios of continuous 

loading positive values 𝑞 and combinations at constant value F=2 [kN]. 

For standard profiles, the smaller value of deflection shows UPN or 2UPN profiles 
compared to IN profiles. However, the UPN200 profile has a smaller cross-section area 
(𝐴௎ଶ଴଴ = 32.2 [𝑐𝑚ଶ]) than the 2UPN160 (𝐴ଶ௎ଵ = 48 [𝑐𝑚ଶ]). It is worthwhile to note 
that for the same selected profile, the beam loaded with continuously distributed loading 
has smaller deflection values. As shown in Table 2, it is evident that for the same 
dimensions of non-standard I and U profiles (Profiles 2 and 3) with ℎ = 8.34[𝑐𝑚], the 
maximum deflection is 𝑓௠௔௫ = 4.19622[𝜇𝑚] for continuously distributed loading with a 
specific load per meter 𝑞 = 2[𝑘𝑁/𝑚], Fig. 7 a), compared to 𝑓௠௔௫ = 4.74572 [𝜇𝑚] in 
the case of discrete forces with a value 𝐹 = 1 [𝑘𝑁]  Fig. 7 d). Therefore, continuous load 
distribution is more suitable for beams subjected to bending in terms of the deformations 
that develop for the same dimensions and material of the beam. 

                                                                                                                             

                                                                                    
𝐹 = 2 [𝑘𝑁];    

ఋ

௛
= 0,2;     𝑎 = 1 [𝑚];   𝑧௠௔௫ = 0 [𝑚]  

 𝑞 = 2 [𝑘𝑁/𝑚]  𝑞 = 4 [𝑘𝑁/𝑚]  𝑞 = 6 [𝑘𝑁/𝑚] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 220 1.4924 IN 240 1.4039 IN 260 1.2834 

UPN 240 1.2685 UPN 260 1.2379 UPN 280 1.173 
2UPN 180 1.6914 2UPN 200 1.5619 2UPN 220 1.3693 

for 1 ℎ[𝑐𝑚] 
11.83 

3.2176 for 1 ℎ[𝑐𝑚] 
13.02 2.8647 

for 1 ℎ[𝑐𝑚] 
14.02 

2.6267 

for 2, 3 ℎ[𝑐𝑚] 
12.03 

3.1635 for 2, 3 ℎ[𝑐𝑚] 
13.24 

2.8165 
for 2, 3 ℎ[𝑐𝑚] 

14.26 
2.5825 

for 4 𝑑[𝑐𝑚] 
13.47 

2.8249 for 4 𝑑[𝑐𝑚] 
14.83 2.5151 

for 4 𝑑[𝑐𝑚] 
15.97 

2.30615 
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Fig. 7 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) represents the deflection values along the 
cantilever beam for different scenarios of loading values and combinations 𝐹 =

0,1,2,3 [𝑘𝑁]  𝑎𝑛𝑑  𝑞 = 0,2,4,6[𝑘𝑁/𝑚]. The cantilever beam has standard IN, UPN and 
2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 
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Table 2 The maximal deflection values along the cantilever beam, (𝑦 (𝑧) = 𝑓[𝑚]) for 
different standard and nonstandard profiles and for different scenarios of loading values 

and combinations 𝐹 = 0,1,2,3 [𝑘𝑁]  and  𝑞 = 0,2,4,6[𝑘𝑁/𝑚].  

                                                                                                                             

                                                                                                                             
ఋ

௛
= 0.2;      𝑎 = 1 [𝑚];    𝑧 = 0[𝑚]  

Fig. 7 a)     𝐹 = 0 [𝑘𝑁]; 
𝑞 = 2 [𝑘𝑁/𝑚] 

Fig. 7 d)     𝐹 = 1 [𝑘𝑁]; 
𝑞 = 0 [𝑘𝑁/𝑚] 

Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN  140 2.44328 IN 140 2.76323 

UPN 140 2.31405 UPN 140 2.61708 
2UPN 120 1.92308 2UPN 120 2.17491 

for 1 ℎ = 8.20[𝑐𝑚] 4.26803 for 1  ℎ = 8.20[𝑐𝑚] 4.82694 
for 2,3  ℎ = 8.34[𝑐𝑚] 4.19622 for 2,3  ℎ = 8.34[𝑐𝑚] 4.74572 

for 4 𝑑 = 9.34[𝑐𝑚] 3.74718 for 4 𝑑 = 9.34[𝑐𝑚] 4.23788 
Fig. 7 b)      𝐹 = 0 [𝑘𝑁]; 

𝑞 = 4 [𝑘𝑁/𝑚] 
Fig. 7 e)   𝐹 = 2 [𝑘𝑁]; 

𝑞 = 0 [𝑘𝑁/𝑚] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 180 1.93103 IN 180 2.18391 

UPN 200 1.46597 UPN 200 1.65794 
2UPN 160 1.51351 2UPN 160 1.71171 

for 1 ℎ = 10.33[𝑐𝑚] 3.38754 for 1 ℎ = 10.33[𝑐𝑚] 3.83114 
for 2,3  ℎ = 10.51[𝑐𝑚] 3.33054 for 2,3  ℎ = 10.51[𝑐𝑚] 3.76668 

for 4 𝑑 = 11.77[𝑐𝑚] 2.97414 for 4 𝑑 = 11.77[𝑐𝑚] 3.36361 
Fig. 7 c)     𝐹 = 0 [𝑘𝑁]; 

𝑞 = 6 [𝑘𝑁/𝑚] 
Fig. 7 f)    𝐹 = 3 [𝑘𝑁]; 

𝑞 = 0 [𝑘𝑁/𝑚] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 220 1.37255 IN 220 1.55229 

UPN 240 1.16667 UPN 240 1.31944 
2UPN 180 1.55556 2UPN 180 1.75926 

for 1 ℎ = 11.83[𝑐𝑚] 2.95929 for 1 ℎ = 11.83[𝑐𝑚] 3.34681 
for 2,3  ℎ = 12.03[𝑐𝑚] 2.90949 for 2,3  ℎ = 12.03[𝑐𝑚] 3.2905 
for 4  𝑑 = 13.47[𝑐𝑚] 2.59815 for 4  𝑑 = 13.47[𝑐𝑚] 2.93838 

 
From engineering practice, it is almost a rule that for cantilever beams, the maximum 

deflection occurs at the free end of the cantilever. However, in the next example (Figs. 8 
d), 8 e), we show that with small changes in the intensity of the uniformly distributed 
load, the values of the maximum deflection do not necessarily have to be at the free end, 
but somewhere along the span of the beam at the value 𝑧௠௔௫[𝑚]. For greater values of 
the load, the maximum deflection moves closer to the end of the cantilever, Figs. 8 d) and 
8 e), and Table 3. 
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Fig. 8 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) of the cantilever beam for different scenarios of 
continuous and combinations loading negative values q at constant value 𝐹 = 4 [𝑘𝑁].The 
cantilever beam has a standard IN, UPN and 2UPN profiles and nonstandard profiles (1, 

2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

Additional observation can be drawn from Fig. 8 and Table 3: the deflection values 
differ slightly among various standard profiles, but there are significant differences in the 
deflection values between standard and non-standard profiles. Understandably, non-
standard profiles exhibit much greater deformation, with the least deformation occurring 
in the heaviest solid circular profile. 

Engineering experience in optimal profile selection involves considering numerous 
factors, and the knowledge level of the designer must be substantial. In previous 
examples with a cantilever beam, concentric and continuous loads were observed. 
However, in practice, there are often eccentric axial loads that induce a reduction couple, 
i.e., the effect of a concentric moment. Therefore, the next examples of beams with 
overhangs consider the presence of such loading. Controlling the deflection 
magnitude through a single parameter is almost linear when considering eccentricity. 
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Table 3 The maximal deflection values along the cantilever beam, (𝑦 (𝑧) = 𝑓[𝑚]) for 
different standard and nonstandard profiles and for different scenarios of continuous and 

combinations loading negative values 𝑞 at constant value 𝐹 = 4 [𝑘𝑁]. 

                                                                                                                              
          

                                                                                                              
𝐹 = 4 [𝑘𝑁];   

ఋ

௛
= 0,2;     𝑎 = 1 [𝑚]  

Fig.8 a)   𝑞 = −6 [𝑘𝑁/𝑚] Fig.8 d)   𝑞 = −9 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for   
𝑧௠௔௫ = 0[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for  
𝑧௠௔௫ = 1.643[𝑚] 

IN 140 3.72309 IN 120 -0.709701 

UPN 140 3.52617 UPN 120 -0.639511 

2UPN 120 2.9304 2UPN 100 -0.565005 
for 1 ℎ = 8.2[𝑐𝑚] 6.50366 for 1 ℎ = 6.51[𝑐𝑚] -1.78822 

for 2, 3 ℎ = 8.34[𝑐𝑚] 6.39423 for 2, 3 ℎ = 6.62[𝑐𝑚] -1.75814 

for 4 𝑑 = 9.34[𝑐𝑚] 5.70999 for 4 𝑑 = 7.41[𝑐𝑚] -1.57 

Fig.8 b) 𝑞 = −8.2 [𝑘𝑁/𝑚] Fig.8 e)  𝑞 = −9.5 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for   
𝑧௠௔௫ = 0[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for  
𝑧௠௔௫ = 1.193[𝑚] 

IN 120 1.80894 IN 140 -0.748874 

UPN 120 1.63004 UPN 140 -0.709264 
2UPN 100 1.44013 2UPN 120 -0.589429 

for 1 ℎ = 6.51[𝑐𝑚] 4.55797 for 1 ℎ = 7.45[𝑐𝑚] -1.91976 

for 2, 3 ℎ = 6.62[𝑐𝑚] 4.48128 for 2, 3 ℎ = 7.58[𝑐𝑚] -1.88746 

for 4 𝑑 = 7.41[𝑐𝑚] 4.00174 for 4 𝑑 = 8.49[𝑐𝑚] -1.68548 

Fig.8 c)  𝑞 = −8.5 [𝑘𝑁/𝑚] Fig.8 f)   𝑞 = −11 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for   
𝑧௠௔௫ = 0[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧௠௔௫ = 0[𝑚] 

IN 120 1.1687 IN 180 -0.942529 

UPN 120 1.05311 UPN 200 -0.715532 

2UPN 100 0.930421 2UPN 160 -0.738739 

for 1 ℎ = 6.51[𝑐𝑚] 2.94475 for 1 ℎ = 9.39[𝑐𝑚] -2.42646 

for 2, 3 ℎ = 6.62[𝑐𝑚] 2.89521 for 2, 3 ℎ = 9.55[𝑐𝑚] -2.38564 

for 4 𝑑 = 7.41[𝑐𝑚] 2.58539 for 4 𝑑 = 10.69[𝑐𝑚] -2.13035 

In Fig. 9, the variety of elastic curves for different standard and non-standard profiles 
are presented for beam with overhangs and axial eccentricity. Firstly, we vary the value 
of eccentric force while keeping the same eccentric distance. The effect of the local 
reduction couple is evident in the shape of the deflection of the elastic curve. For small 
changes in the value of the order of force magnitude of the fourth decimal place, the 
deflection value can be halved with an increase in load by selecting a profile of larger 
dimensions. See images Figs. 9 c) and 9d). For instance, instead of choosing profile IN80 
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that gives 𝒇𝒎𝒂𝒙 = 2.08155[𝝁𝒎] for 𝐹 = 1.9000[𝑘𝑁], it can be chosen profile IN100 that 
has 𝒇𝒎𝒂𝒙 = 0.94714[𝝁𝒎] for 𝐹 = 1.9001[𝑘𝑁], see Table 4. Thus, with this dimensioning 
criterion of ultimate bending strength, for a small loading increase, it may happen that the 
beam becomes considerably heavier. When comparing 𝐴ூ଼଴ = 7.57 [𝑐𝑚ଶ] to 𝐴ூଵ଴଴ =
10.6 [𝑐𝑚ଶ] it follows that the beam of IN100 profile has 40.03% greater weight than the 
of the same material and with the same loading of profile IN80.  

 

 

Fig. 9 The elastic curve  (𝑦 (𝑧) = 𝑓[𝑚]) of a beam with axial eccentricity and distributed 
loading on overhang for different scenarios of distributed forces and combinations 

positive values F at constant continuous loading value 𝑞 = 2 [𝑘𝑁/𝑚]. The beam has a 
standard IN, UPN and 2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ =

0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

Thus, if the optimizing criterion is reducing the weight of the beam, in this case of 
small variation of loading value, another criterion for dimensioning should be chosen, 
such as the criterion of maximum allowable deflection. Similar observations can be 



20 M. STAMENKOVIĆ ATANASOV, J. SIMONOVIĆ, D. B. JOVANOVIĆ 

deduced also from Table 5, and Figs. 10c) and 10d), which show values of maximum 
deflection variations with small changes in specific continuous loading 𝑞[𝑘𝑁/𝑚].  

Table 4 The maximal deflection values of a beam with axial eccentricity and distributed 
loading on overhang (𝑦 (𝑧) = 𝑓[𝑚]), for different scenarios of distributed forces and 
combinations positive values 𝐹 at constant continuous loading value  𝑞 = 2 [𝑘𝑁/𝑚]. 

                                                                                                                               

                                                                                                                             
𝑞 = 2 [𝑘𝑁/𝑚] ;    

ఋ

௛
= 0.2;      𝑎 = 1 [𝑚]  

Fig. 9 a)  𝐹 = 1 [𝑘𝑁] Fig. 9 d)  𝐹 = 1.9001 [𝑘𝑁] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 

𝑧௠௔௫ = 3.057[𝑚] Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧௠௔௫ = 8.0[𝑚] 

IN 80 1.14354 IN 100 0.94714 
UPN 80 0.839313 UPN 100 0.78622 
2UPN 65 0.773627 2UPN 80 0.76396 

for 1 ℎ = 4.69[𝑐𝑚] 2.52732 for 1 ℎ = 5.12 [𝑐𝑚] 3.2426 
for 2, 3 ℎ = 4.69[𝑐𝑚] 2.4848 for 2, 3 ℎ = 5.21[𝑐𝑚] 3.18809 
for 4 𝑑 = 5.35[𝑐𝑚] 2.2189 for 4 𝑑 = 5.83[𝑐𝑚] 2.84693 

Fig. 9 b)   𝐹 = 1.5 [𝑘𝑁] Fig. 9 e)  𝐹 = 3 [𝑘𝑁] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧௠௔௫ = 8.0[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧௠௔௫ = 4.27[𝑚] 

IN 80 1.2675 IN 120 -1.20149 
UPN 80 0.93029 UPN 120 -1.08267 
2UPN 65 0.85749 2UPN 100 -0.95653 

for 1 ℎ = 4.94[𝑐𝑚] 2.28084 for 1 ℎ = 6.23[𝑐𝑚] -3.61735 
for 2, 3 ℎ = 5.03[𝑐𝑚] 2.24246 for 2, 3 ℎ = 6.33[𝑐𝑚] -3.55649 
for 4 𝑑 = 5.63[𝑐𝑚] 2.0025 for 4 𝑑 = 7.09 [𝑐𝑚] -3.17591 

Fig. 9 c) 𝐹 = 1.9000 [𝑘𝑁] Fig. 9 f)  𝐹 = 8 [𝑘𝑁] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 

𝑧௠௔௫ = 8.00[𝑚] Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 

𝑧௠௔௫ = 4.099[𝑚] 
IN 80 2.08155 IN 160 -1.65561 

UPN 80 1.52778 UPN 180 -1.14666 
2UPN 65 1.40821 2UPN 140 -1.27933 

for 1 ℎ = 5.12[𝑐𝑚] 3.24244 for 1 ℎ = 9.12[𝑐𝑚]  -3.08649 
for 2, 3 ℎ = 5.21[𝑐𝑚] 3.18789 for 2, 3 ℎ = 9.27[𝑐𝑚] -3.03456 
for 4 𝑑 = 5.83[𝑐𝑚] 2.84675 for 4 𝑑 = 10.39[𝑐𝑚] -2.70983 

It is interesting to note that while standard profiles change their dimensions and 
increase the overall size of the structure for such small changes in loading, both force 
(Fig. 9 and Table 4) and continuous loading (Fig. 10 and Table 5), the dimensions of non-
standard profiles do not change (see Tables 4 for 𝐹 = 1.9000[𝑘𝑁] and 𝐹 = 1.9001[𝑘𝑁] 
and Table 5 for 𝑞 = 4.8400 [𝑘𝑁/𝑚] and 𝑞 = 4.8401 [𝑘𝑁/𝑚]). From this, we conclude 
that although non-standard profiles have in general higher deflection values, they 
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maintain these values over a wider range of loading changes, making them more robust to 
small variations in loading values. 

Table 5 The maximal deflection values of a beam with axial eccentricity and distributed 
loading on overhang (𝑦 (𝑧) = 𝑓[𝑚]), for different scenarios of continuous and 

combinations loading positive values 𝑞 at constant value 𝐹 = 2 [𝑘𝑁]. 

                                                                                                                               

                                                                                                                             
𝐹 = 2 [𝑘𝑁];   

ఋ

௛
= 0.2;      𝑎 = 1 [𝑚]  

Fig. 10 a)  𝑞 = 2 [𝑘𝑁/𝑚] Fig. 10 d)  𝑞 = 4.8401[𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 8.00[𝑚] Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 3.24[𝑚] 
IN 100 1.03964 IN 120 0.92295 

UPN 100 0.86299 UPN 120 0.83167 
2UPN 80 0.83857 2UPN 100 0.73477 

for 1 ℎ = 5.17[𝑐𝑚] 3.44131 for 1 ℎ = 6.18[𝑐𝑚] 2.86568 
for 2, 3 ℎ = 5.25[𝑐𝑚] 3.3834 for 2, 3 ℎ = 6.28[𝑐𝑚] 2.81746 
for 4 𝑑 = 5.89[𝑐𝑚] 3.02135 for 4 𝑑 = 7.04[𝑐𝑚] 2.51597 

Fig. 10 b)   𝑞 = 3 [𝑘𝑁/𝑚] Fig. 10 e)  𝑞 = 8 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 8.00[𝑚] Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 3.47[𝑚] 
IN 100 0.63353 IN 140 1.36935 

UPN 100 0.52589  UPN 140 1.29693 
2UPN 80 0.51101 2UPN 120 1.0778 

for 1 ℎ = 5.56[𝑐𝑚] 1.55738 for 1 ℎ = 7.61[𝑐𝑚] 3.22724 
for 2, 3 ℎ = 5.66[𝑐𝑚] 1.53118 for 2, 3 ℎ = 7.74[𝑐𝑚] 3.17294 
for 4 𝑑 = 6.34[𝑐𝑚] 1.36733 for 4 𝑑 = 8.67[𝑐𝑚] 2.83341 

Fig. 10 c)  𝑞 = 4.8400 [𝑘𝑁/𝑚] Fig. 10 f)  𝑞 = 10 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 3.24[𝑚] Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 

𝑧௠௔௫ = 3.52[𝑚] 
IN 100 1.77025 IN 160 1.16803 

UPN 100 1.46948 UPN 180 0.80896 
2UPN 80 1.42789 2UPN 140 0.90256 

for 1 ℎ = 6.18[𝑐𝑚] 2.86559 for 1 ℎ = 8.35[𝑐𝑚] 3.0951 
for 2, 3 ℎ = 6.28[𝑐𝑚] 2.81738 for 2, 3 ℎ = 8.49[𝑐𝑚] 3.04302 
for 4 𝑑 = 7.04[𝑐𝑚] 2.51589 for 4 𝑑 = 9.51[𝑐𝑚] 2.71739 

Additionally, this example of a beam with eccentric loading, as shown in Figs. 9 and 
10 and Tables 4 and 5, provides clear illustrations that highlight the effect of eccentricity 
on the location of maximum deflection. For small changes in loading values, this location 
shifts along the beam much more than in the example with a cantilever beam without 
eccentricity. 
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Fig. 10 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) of a beam with axial eccentricity and distributed 
loading on overhang for different scenarios of continuous and combinations loading 

positive values q at constant value 𝐹 = 2 [𝑘𝑁]. The beam has a standard IN, UPN and 
2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

If there is eccentric loading, the deflection magnitude and profile shape can be 
controlled by the eccentric distance 𝑟 [𝑚] from the beam's axis. Thus, Fig. 11 shows the 
shape of the elastic curve with changes in the length of eccentricity. Table 6 accompanies 
this figure and shows the maximum deflection values and the characteristic cross-sections 
where these values occur for the selected profiles. For the beam with overhangs shown in 
Fig. 11, also in Figs. 9 and 10, we observe that the maximum deflection most often 
occurs at the right overhang, but the maximum deflection value can also be between the 
supports. When the distance of the eccentric axial force from the beam's axis 𝑟 [𝑚] 
increases, we control the occurrence of maximum deflection, which now appears between 
the supports rather than at the free end, Figs. 11 e) and 11 f), and Table 6.  
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Fig. 11 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) of a beam with axial eccentricity and distributed 
loading on overhang for different scenarios of combination impact of eccentricity 

distance  𝑟 [𝑚]  and constant values of loading 𝐹 = 2 [𝑘𝑁] and 𝑞 = 2 [𝑘𝑁/𝑚]. The 
beam has a standard IN, UPN and 2UPN profiles and nonstandard profiles (1, 2, 3, 4) 

with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

From Table 6, it is evident that increasing the eccentricity distance 𝑟 [𝑚] linearly 
increases the deflection at specific points 𝑧 [𝑚] along the beam. This linear trend is 
shown in Fig. 12 for the standard IN 100 profile and applies to any selected profile, 
whether standard or non-standard. This means that the deflection value can be linearly 
controlled by one parameter, specifically the increase in eccentricity distance. 
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Table 6 The maximal deflection values of a beam with axial eccentricity and distributed 
loading on overhang, for different scenarios of combination impact of eccentricity 

distance  𝑟 [𝑚] and constant values of loading 𝐹 = 2 [𝑘𝑁] and 𝑞 = 2 [𝑘𝑁/𝑚]. 

                                                                                                                            

                                                                                       
𝐹 = 2 [𝑘𝑁];   𝑞 = 2[𝑘𝑁/𝑚];   

ఋ

௛
= 0.2;   𝑎 = 1 [𝑚]  

Fig. 11 a)  𝑟 = 0 [𝑚] Fig. 11 d)  𝑟 = 0.8 [𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00 [𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00 [𝑚] 

IN 100 0.84470 IN 100 1.00065 
UPN 100 0.70119 UPN 100 0.83064 
2UPN 80 0.68134 2UPN 80 0.80713 

for 1 ℎ = 5.17[𝑐𝑚] 2.79606 for 1 ℎ = 5.17[𝑐𝑚] 3.31226 
for 2, 3 ℎ = 5.25[𝑐𝑚] 2.74902 for 2, 3 ℎ = 5.25[𝑐𝑚] 3.25653 
for 4 𝑑 = 5.88[𝑐𝑚] 2.45485 for 4 𝑑 = 5.88[𝑐𝑚] 2.90805 

Fig. 11 b)   𝑟 = 0.2 [𝑚] Fig. 11 e)  𝑟 = 1.2 [𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00 [𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 4.407[𝑚] 

IN 100 0.88369 IN 100 -1.10832 
UPN 100 0.73354 UPN 100 -0.92001 
2UPN 80 0.71278 2UPN 80 -0.89397 

for 1 ℎ = 5.17[𝑐𝑚] 2.92511 for 1 ℎ = 5.39[𝑐𝑚] -3.10477 
for 2, 3 ℎ = 5.25[𝑐𝑚] 2.87589 for 2, 3 ℎ = 5.48[𝑐𝑚] -3.05253 
for 4 𝑑 = 5.88[𝑐𝑚] 2.56815 for 4 𝑑 = 6.13[𝑐𝑚] -2.72588 

Fig. 11 c) 𝑟 = 0.4 [𝑚] Fig. 11 f) 𝑟 = 1.6 [𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧 = 8.00 [𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧 = 4.288[𝑚] 

IN 100 0.92267  IN 100 -1.38676 
UPN 100 0.76591  UPN 100 -1.15115 
2UPN 80 0.74423 2UPN 80 -1.11857 

for 1 ℎ = 5.17[𝑐𝑚] 3.05416 for 1 ℎ = 5.78[𝑐𝑚] -2.93094 
for 2, 3 ℎ = 5.25[𝑐𝑚] 3.00277 for 2, 3 ℎ = 5.88[𝑐𝑚] -2.88163 
for 4 𝑑 = 5.88[𝑐𝑚] 2.68145 for 4 𝑑 = 6.58[𝑐𝑚] -2.57327 

To meet a deflection limit, the designer can reduce the distance of the eccentric axial 
force while keeping other beam parameters constant. This approach ensures the required 
deflection value in a straightforward, linear prediction manner. 
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Fig. 12 Deflection diagram of a beam with an overhang at the free end for 𝑧 = 8 [𝑚], 
depending on the eccentric distance from the longitudinal axis of the beam 𝑟 [𝑚] of the 

force 𝐹 = 2 [𝑘𝑁]. For 𝑞 = 2 [𝑘𝑁/𝑚],   𝛿 ℎ⁄ = 0,2  and   𝑎 = 1 [𝑚]  the beam is a 
standard IN 100 profile. 

All previously made conclusions regarding the selection of profiles and the values of 
maximum deflections for overhang beams with eccentricity can also be applied to the 
following example of an overhang beam without axial eccentricity. Fig. 13 illustrates the 
different shapes of the elastic curve under varying values and orientations of continuously 
distributed loading. If the orientation of the concentrated forces remains unchanged while 
only the orientation of the continuous loading varies, the direction of the deflection 
changes accordingly. This can be observed by comparing the right and left-hand sides of 
Fig. 13. In this case, it is confirmed that among non-standard profiles, the solid circular 
cross-section yields the lowest deflection value under the same load, but it also has the 
lowest surface utilization efficiency (the degree of utilization of the cross-section 𝜂). 
Regarding standard profiles with much higher surface utilization efficiency, standard U 
or 2U profiles prove to be better than I profile in terms of lower deflection values, as 
shown in Table 7. However, as previously commented, double U profiles have a lower 
shape factor 𝜙௙ and are less favorable in terms of the weight-to-load-bearing ratio. 

The elastic curves shown in Fig. 14 and the results in Table 8 demonstrate that the 
deflection between supports can be adjusted and controlled by varying the orientation and 
relationship between discrete forces on the overhangs. Regarding the selection of 
profiles, the same conclusions as before can be applied to this type of beam and load 
distribution. Generally, as the magnitude of the load increases, larger profile dimensions 
are required. For the same load and selected profile based on the ultimate bending 
strength criterion, standard profiles yield significantly lower absolute deflection values 
compared to non-standard profiles. U profiles exhibit slightly lower deflections than 
selected I profiles, but I profiles have smaller surface areas, making them more optimal in 
terms of weight-to-load ratio. 
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Fig. 13 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) represents the deflection values along the beam 
length for different scenarios of continuous and combinations loading positive and 

negative values q at constant value F=2 [kN]. The beam has a standard IN, UPN and 
2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

At the very end of the analysis, let us make a small comparison of the values of 
selected profiles and beam weight as the magnitude of discrete forces increases (see Fig. 
15). Comparing the results from Fig. 15 a) and Fig. 15 c), it can be observed that when 
the magnitude of the force is multiplied by 2, 3 times (from 𝐹 = 6 [𝑘𝑁] to 𝐹 = 20 [𝑘𝑁]) 
the profile UPN with the smallest value of maximum deflection takes standard values 
from UPN 200 to UPN 260. The height of the beam increases by only 6 [𝑐𝑚], but the 
section area enlarges significantly, from 𝐴௎ଶ଴଴ = 32.2 [𝑐𝑚ଶ] to 𝐴௎ଶ଺଴ = 48.3 [𝑐𝑚ଶ], 
which increases the weight of the beam made from the same material and of the same 
total length by 50%. Finally, the increase in the magnitude of the force necessitates a 
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larger profile dimension to maintain structural integrity. While the height of the beam 
increases slightly, the section area sees a significant enlargement, resulting in a notable 
increase in the weight of the beam. This adjustment ensures that the beam can handle the 
increased load while maintaining the desired deflection characteristics. 

Table 7 The maximal deflection values of a beam with distributed loading on overhang 
(𝑦 (𝑧) = 𝑓[𝑚]), for different scenarios of continuous and combinations loading positive 

and negative values q at constant value 𝐹 = 2 [𝑘𝑁]. 

                                                                                                                                  

                                                                                                            
𝐹 = 2 [𝑘𝑁];    

ఋ

௛
= 0.2;      𝑎 = 1 [𝑚]  

Fig. 13 a)  𝑞 = 4 [𝑘𝑁/𝑚] Fig. 13 d)  𝑞 = −4 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 3.426[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00[𝑚] 

IN 160 1.25314 IN 140 2.00407 
UPN 180 0.867916 UPN 140 1.89807 

2UPN 140 0.968337 2UPN 120 1.57738 
for 1 ℎ = 8.84 [𝑐𝑚] 2.65099 for 1 ℎ = 7.28 [𝑐𝑚] 5.62583 

for 2, 3 ℎ = 8.99 [𝑐𝑚] 2.60639 for 2, 3  ℎ = 7.41 [𝑐𝑚] 5.53117 
for 4 𝑑 = 10.6 [𝑐𝑚] 2.3274 for 4 𝑑 = 8.29 [𝑐𝑚]. 4.93928 

Fig. 13 b)   𝑞 = 8 [𝑘𝑁/𝑚] Fig. 13 e)  𝑞 = −8 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧 = 3.417[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎]  for 
𝑧 = 8.00[𝑚] 

IN 200 0.974937 IN 180 1.52529 
UPN 220 0.775601 UPN 200 1.15794 

2UPN 180 0.772728 2UPN 160 1.1955 
for 1 ℎ = 10.67 [𝑐𝑚] 2.21915 for 1 ℎ = 9.69 [𝑐𝑚] 3.45028 

for 2, 3 ℎ = 10.85[𝑐𝑚] 2.18181 for 2, 3 ℎ = 9.86 [𝑐𝑚] 3.39223 
for 4 𝑑 = 12.15 [𝑐𝑚] 1.94834 for 4 𝑑 = 11.04 [𝑐𝑚] 3.02922 

Fig. 13 c)   𝑞 = 16 [𝑘𝑁/𝑚] Fig. 13 f)  𝑞 = −16 [𝑘𝑁/𝑚] 

Profile 
𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00[𝑚] Profile 

𝒇𝒎𝒂𝒙 [𝝁𝒎] for 
𝑧 = 8.00[𝑚] 

IN 240 -0.980784 IN 240 1.02078  
UPN 260 -0.864799 UPN 260 0.900069  

2UPN 200 -1.09119 2UPN 200 1.13569  
for 1 ℎ = 13.15 [𝑐𝑚] -1.92465 for 1 ℎ = 12.53 [𝑐𝑚] 2.42498 

for 2, 3 ℎ = 13.37[𝑐𝑚] -1.89227 for 2, 3 ℎ = 12.75 [𝑐𝑚] 2.38418 
for 4 𝑑 = 14.97 [𝑐𝑚] -1.68978 for 4 𝑑 = 14.28 [𝑐𝑚] 2.12905 
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Table 8 The maximal deflection values of a beam with distributed loading on overhang 
(𝑦 (𝑧) = 𝑓[𝑚]), for different scenarios of distributed forces and combinations negative 

values 𝐹 at constant continuous loading value 𝑞 = 4 [𝑘𝑁/𝑚]. 

                                                                                                                             

                                                                                       
𝑞 = 4 [𝑘𝑁/𝑚];  

ఋ

௛
= 0.2;  𝑎 = 1 [𝑚];  𝑧 = 8 [𝑚]  

Fig. 14 a)  𝐹 = −2 [𝑘𝑁] Fig. 14 d) 𝐹 = −9 [𝑘𝑁] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 140 -2.00407 IN 180 -0.99713 

UPN 140 -1.89807 UPN 200 -0.75698 
2UPN 120 -1.57738 2UPN 160 -0.78153 

for 1 ℎ = 7.28[𝑐𝑚] -5.62583 for 1 ℎ = 9.76[𝑐𝑚] -2.19395 
for 2, 3 ℎ = 7.41[𝑐𝑚] -5.53117 for 2, 3 ℎ = 9.93[𝑐𝑚] -2.15703 
for 4 𝑑 = 8.29[𝑐𝑚]  -4.93928 for 4 𝑑 = 11.12[𝑐𝑚] -1.92621 

Fig. 14 b)   𝐹 = −6 [𝑘𝑁] Fig. 14 e)  𝐹 = −10 [𝑘𝑁] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 160 -1.40998 IN 180 -1.02644 

UPN 180 -0.97654 UPN 200 -0.77923 
2UPN 140 -1.08953 2UPN 160 -0.80451 

for 1 ℎ = 8.53[𝑐𝑚] -3.43496 for 1 ℎ = 10.11[𝑐𝑚] -1.96245 
for 2, 3 ℎ = 8.67[𝑐𝑚] -3.37716 for 2, 3 ℎ = 10.29 [𝑐𝑚] -1.92943 
for 4 𝑑 = 9.71[𝑐𝑚] -3.01577 for 4 𝑑 = 11.52[𝑐𝑚] -1.72296 

Fig. 14 c) 𝐹 = −8 [𝑘𝑁] Fig. 14 f)  𝐹 = −16 [𝑘𝑁] 
Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] Profile 𝒇𝒎𝒂𝒙 [𝝁𝒎] 
IN 180 -0.96782 IN 220 -0.56972 

UPN 200 -0.73473 UPN 240 -0.48426 
2UPN 160 -0.75856 2UPN 180 -0.64568 

for 1 ℎ = 9.39[𝑐𝑚] -2.49156 for 1 ℎ = 11.83[𝑐𝑚] -1.22834 
for 2, 3 ℎ = 9.55[𝑐𝑚] -2.44964 for 2, 3 ℎ = 12.03[𝑐𝑚] -1.20767 
for 4 𝑑 = 10.69[𝑐𝑚] -2.18751 for 4 𝑑 = 13.47 [𝑐𝑚] -1.07844 
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Fig. 14 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) represents the deflection values along the beam 
length for different scenarios of distributed forces and combinations negative values F at 
constant continuous loading value 𝑞 = 4 [𝑘𝑁/𝑚]. The beam has a standard IN, UPN and 
2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

It is interesting to note from Fig. 15 b) that when a certain value of the load force 𝐹 is 
applied, the deflection at the right end becomes zero. Even though we have already seen 
from Fig. 14 that the maximum deflection is usually at the right free end. This suggests 
that by only changing the loading value and/or distribution with an educated guess, we 
can control the value of deformation in the selected position on the beam. Thus, the 
examples of loading types and beam support types presented in this research are also 
intended to enable engineers to make educated guesses and recognize patterns. This 
ultimately aims to improve the efficient utilization of structures predominantly subjected 
to bending. 
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Fig. 15 The elastic curve (𝑦 (𝑧) = 𝑓[𝑚]) represents the deflection values along the beam 
length for different scenarios of distributed forces and combinations positive values F at 

constant continuous loading value 𝑞 = 2 [𝑘𝑁/𝑚]. The beam has a standard IN, UPN and 
2UPN profiles and nonstandard profiles (1, 2, 3, 4) with   𝛿 ℎ⁄ = 0,2  𝑎𝑛𝑑   𝑎 = 1 [𝑚]. 

5. CONCLUSION 

The study demonstrates the importance of selecting the optimal cross-sectional shape 
for beams subjected to bending, based on the theory of elastic bending and the analysis of 
elastic curves under various loading conditions and boundary scenarios. By deriving the 
differential equation of the elastic curve and solving it for different beam configurations, 
we have shown the correlation between beam bending stiffness, shape factor, and the 
degree of utilization of the cross-sectional shape. 

The application of the ultimate bending strength criterion for dimensioning beams has 
allowed us to determine the characteristic dimensions of profiles according to the 
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maximum bending moment for each type of beam. The analysis of different cross-
sectional profiles under the same loading conditions has provided insights into the 
maximal deflection and the most efficient profile selection. 

Our study demonstrates that the standard I profile is the most optimal cross-sectional 
shape for beams subjected to bending, considering various parameters such as stiffness, 
shape factor, and degree of utilization. The analysis shows that the standard I profile has 
a utilization degree that is 20.75% better than the non-standard U or I profile, making it 
the preferred choice. Additionally, the standard U profile has a utilization degree that is 
12.26% better than the non-standard U or I profile. 

When selecting the most favorable profile, the degree of utilization of the profile 
cross-section provides the characteristic of the best distribution of the cross-sectional area 
in relation to the neutral axis, the axis around which bending occurs. Ideally, the distant 
flanges from the axis around which the beam bends are the best in terms of dimensioning 
the beam according to the criterion of ultimate bending strength. Considering this, we can 
conclude that the standard I profile is optimal both in terms of stiffness and the utilization 
of the cross-sectional area, making it the best choice for beams subjected to bending. 

Other criteria, such as the allowable maximum deflection value, can also be decisive. 
Beams with greater stiffness will perform better in dimensioning, having a smaller 
deflection value for the same load. The shape factor for elastic bending, which gives the 
ratio of the stiffness of profiles made of the same materials to the stiffness of a solid 
circular cross-section profile, is also an important consideration. 

The findings provide valuable guidance for engineers and designers in selecting the 
most efficient cross-sectional shapes for beams, ensuring both optimal performance and 
practical feasibility in structural applications. 

The numerical analysis conducted on elastic beams of varying configurations reveals 
critical insights into their performance under different loading scenarios. The 
examination included cantilevered beams subjected to continuous and discrete forces, as 
well as overhanging beams with eccentric loads. By applying the Clebsch procedure, we 
derived the elastic curves for both standard and non-standard cross-sectional shapes, 
focusing on maximum bending moments to effectively dimension these profiles. 

A key finding is the relationship between profile selection and deflection behavior. 
Standard profiles consistently exhibit lower maximum deflection values compared to 
non-standard profiles, establishing their preference in applications where minimal 
deflection is critical. However, non-standard profiles possess distinctive advantages, 
particularly in their robustness to small variations in loading. This characteristic allows 
them to maintain performance stability under fluctuating conditions, making them 
suitable for situations where load conditions may not be constant. 

The analysis also underscores the importance of considering various mechanical and 
geometric factors during profile selection, such as material efficiency and shape factor. 
For instance, while standard I profiles often provide superior utilization of cross-sectional 
areas, non-standard profiles may offer better weight-to-load ratios under specific 
conditions. Ultimately, the choice of profile must balance these considerations with the 
specific requirements of the application, factoring in aspects such as allowable 
deflections and the potential impact of loading eccentricities. 

Also, as the applied load on beams increases, the dimensions of the cross-sectional 
profiles must also expand to ensure structural integrity. This requirement is particularly 
evident in scenarios involving a significant rise in load, where not only do the height 
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dimensions marginally increase, but the cross-sectional area can substantially enlarge, 
leading to a notable weight increase of the beam. For instance, a 2,3-fold increase in load 
results in a corresponding 50% rise in the beam's weight, highlighting the necessity for 
designers to consider both structural performance and weight optimization. This balance 
is crucial, as larger profile dimensions are essential to maintain acceptable deflection 
levels while coping with increased loading conditions. The various examples of loading 
and beam support types discussed in this research are designed to help engineers make 
informed predictions and identify patterns. This approach aims to enhance the efficient 
use of structures that are primarily subjected to bending. 

In summary, this study emphasizes the necessity for engineers to have a 
comprehensive understanding of the interplay between beam dimensions, loading 
conditions, and profile selection to optimize structural performance effectively. The 
observations made provide a valuable framework for future design decisions in structural 
engineering. 

Our upcoming project will focus on integrating and optimizing various input 
parameters from the mentioned profiles. We will leverage the knowledge gained from 
elastic lines to seamlessly integrate and optimize additional parameters. 
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