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Abstract. This work presents seven novel fractional-type complex rheological models, 
each defined by specific structural formulas and fractional-order constitutive relations. 
These models incorporate fractional differential operators to describe the behavior of 
ideal materials. Two fundamental models are highlighted, with graphical representations 
of their structural configurations and corresponding fractional-order constitutive 
equations for normal stress and axial dilation. 
The study also introduces the concepts of the compensated subsequential elasticity 
surface and the stress relaxation surface, both expressed as functions of time and 
the fractional differentiation exponent. A comprehensive overview of the models is 
provided, including their Laplace-transformed solutions, which characterize the 
evolution of normal stress or axial deformation in response to external stimuli. 
These seven models offer a unified framework for describing the mechanical behavior 
of idealized fractional materials, encompassing both elasto-viscous solids and 
viscoelastic fluids. 
 
Key words: Seven new rheological complex models of ideal materials of the fractional 
type, Newton's ideally viscous fluid flow of the fractional type, Differential constitutive 
relation, fractional order, Internal degrees of freedom of movement 

1. INTRODUCTION 

The author reviewed a large number of publications available by abstract and in their 
entirety, based on keywords: rheology, rheological models of materials, constitutive 
relations of fractional order, rheological dynamic systems of fractional type, which were 
published by many publishers of scientific literature. Based on that, the following 
conclusions emerged: a* the largest amount of content on rheological models of ideal 
materials refers to classical rheological models (see Figure 1.). The integral form of these 
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models is discussed in a chapter of the university textbook [1] on the Theory of Elasticity, 
authored by a lecturer at the Faculty of Mechanical Engineering in Niš. 

b* Most of the content with rheological models are with applications in construction, 
on concrete and rock materials, then in the textile dyeing industry with application to cotton 
and yarn. Cotton or a combination of wool and cotton; Among the more recent publications 
are those with content on biomaterials and the application of complex material models to 
biomaterials but based on classic rheological models of materials with some additions, but 
more of a descriptive character, than with more serious mathematical contributions. 

Given that the journal editors and reviewers require an introduction that includes a list 
of published works related to the manuscript topic—often resulting in excessive citations 
that serve more as descriptions than as genuine scientific references, since they do not 
inspire new results, the author faced the challenging task of selecting a number of papers. 
These selected works primarily involve applications of classical rheological models 
supported by experiments and are fundamentally based on models already covered in the 
author’s previously cited university textbook [1].  

These are the following classic models: Kelvin-Voight's basic model of an elasto-
viscous solid body, Maxwell's basic model of a visco-elastic fluid, Bigham's basic model 
of an elastoplastic body, or Birgam's complex model of a visco-elastic fluid body (see 
Reference [1] and Figure 1). 

Before presenting descriptive citations of several notable and original works on 
classical rheological models and their applications, including experimental approaches 
discussed therein, it is important to emphasize the author's new results. These results 
pertain to seven novel fractional-type complex rheological models, with applications in the 
dynamics of fractional-type rheological systems, such as oscillators and crawlers. There 
are no previously published results on this topic, the findings presented here are entirely 
new and original. They are exclusively inspired by the models discussed in the chapter of 
the already cited Reference [1], drawn from the author's work in the Theory of Elasticity. 

Rheology (from Greek ῥέω rhéō, "flow" and -λoγία, -logia, "study"), in short 
description, is the area of science of the flow of material, primarily in the liquid state, but 
also "soft solids" or solids under conditions where they react by plastic flow-yield, rather 
than elastically deforming in response to the applied force. Rheology is the science of 
deformation and flow within materials. It is a branch of physics that deals with the 
deformation and flow of materials, solids and liquids. The term rheology was coined by 
Eugene K. Bingham, a professor at Lafayette College, in 1920 at the suggestion of a 
colleague, Marcus Rayner. 

In the paper [2], rheological characterization and rheological models for describing 
viscoelastic behavior of viscoelastic material were investigated. The classic linear models 
of Kelvin and Maxwell were used in parallel, i.e. in series, of Hooke's ideal elastic model 
and Newton's ideal viscous fluid. Also, see Ref. [3]. 

In the paper [4], the classic linear rheological basic models Kelvin-Voigt and Maxwell's 
model were used, as well as the modified Burgers model, which consists of the first two 
basic models applied to concrete in order to test concrete behavior. Here is indicated need 
for testing of the concrete and their characteristics in basic rheological models for service 
loads. 
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Figure 1. Classical complex rheological models of ideal materials with linear Newtonian 
model of viscous fluid: a) Basic complex Kelvin-Voigt model of elasto-viscous solid 

material; b) Basic complex Maxwell's model of viscoelastic fluid; c) Complex Bingham's 
model of elasto-visco-plastic solid material; d) Complex Lethersich's model of visco-
elastic fluid; e) Complex Jeffrey's visco-elastic fluid model; f) Complex Jeffrey-H's 

model of an elasto-viscous solid body; d) Complex Burgers model of visco-elastic fluid; 
h) Decomposition and analysis of the state of normal stresses in the cross-section points 

of the basic complex Kelvin-Voight model of elasto-viscous solid material; m) 
Decomposition and analysis of the state of axial dilatations of the basic complex Maxwell 

model of a viscoelastic fluid (See Ref [1]) 

In Reference [5] in order to formulate the rheological model of time dependent 
deformations of soft rocks, laboratory tests on marl creep have been carried out. Basic task 
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in mathematical description of time dependent deformations of a certain material is to 
define deformations as a function of time, stress and temperature. Experimental research 
on marl creep has been carried out. Wallner’s rheological models, based on the results of 
salt-rock tests, approximate the marl creep behavior well. By the comparative analysis of 
time-deformations after total or partial unloading, it was concluded that the cited model 
does not include reversible deformation of creep, as the result of the assumption that 
primary creep depends only on current stress state. As suggested by the author of the paper 
[5], a modified rheological model, describing soft rock behavior after loading and total or 
partial unloading, is formulated.  Primary creep in the model is formulated as a function of 
the preceding stress change that triggered the onset of creep. 

In References [6,7], an overview of the basic classic simple and complex rheological 
models is given, and in particular, the complex classic Burgers model is used to describe 
the dilation of yarns of different compositions. The authors set up Burgers` classic wool, 
cotton and cotton/wool blend skeins. The results of the corresponding experiments carried 
out are also presented. 

The study of mechanical properties of biological materials mathematical models of 
viscoelastic and viscoplastic properties of polymers, suspensions and gels might be very 
useful [8]. Implementation of fractional derivatives in modelling viscoelastic and plastic 
properties of materials is new trend in science [9, 10]. The general fractional-order Voigt 
and Maxwell models are used to describe rheological phenomena of real materials with the 
memory effect in [11]. 

References [13, 14] apply a fractional flow model to describe a time-dependent 
behavior of non-Newtonian substances. Specifically, author models the physical 
mechanism underlying the thixotropic and anti-thixotropic phenomena of non-Newtonian 
flow. This study investigates the behaviors of cellulose suspensions and starch-milk-sugar 
pastes under constant shear rate. The results imply that the presented model with only two 
parameters is adequate to fit experimental data. Moreover, the parameter of fractional order 
is an appropriate index to characterize the state of given substances. Its value indicates the 
extent of thixotropy and anti-thixotropy with positive and negative order, respectively. 

Fractional rheology-informed neural networks for data-driven identification of 
viscoelastic constitutive models are presented in Ref. [15]. In this paper the complexity of 
the models typically goes hand in hand with that of the observed behaviors and can quickly 
become prohibitive depending on the choice of materials and/or flow protocols. Here, 
authors develop neural networks that are informed by a series of different fractional 
constitutive models. 

Within the fractional derivative framework, paper [16] presents a study 
thermomechanical models with memory and compares them with classical Volterra theory. 
Fractional models involve significant differences in the type of kernels and predict 
important changes in the behavior of fluids and solids. An analogous analysis is carried out 
for the phenomenon of heat propagation with memory and presented in the paper. 
Complete and integral theory of Analytical Dynamics (Mechanics) of Discrete Hereditary 
Systems are presented in Ref. [17] as well as some experiment to determine kernel of 
rheology for different rheological materials hereditary property. 

Models of ideal materials: Functional dependencies of the state of stress and the state 
of deformation are called constitutive relations, which are determined by the internal 
physical properties of the material body. On the basis of these constitutive relations, 
mathematical theory, as well as part of the continuum mechanics, is further based. The 
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basic physical properties of body materials are elasticity, viscosity, and creepability. 
Thermal conductivity and piezoelectricity of deformable bodies are also included in 
presented models. There are other deformable materials, which have properties of coupled 
fields of other physical properties, which will not be discussed here (See Fig. 1). 

Fractional type rheological models: The core idea is to replace the classical Newtonian 
viscous element, commonly used in traditional rheological models (in parallel or series 
configurations), with modified fractional-order Newtonian fluid elements. The behavior of 
these models is then defined under conditions of constant normal stress or constant axial 
strain. Subsequently, the focus shifts to analyzing rheological dynamic systems—either of 
the oscillator or crawler-creep type—with a single degree of freedom (oscillation or creep). 
The goal is to determine the natural or forced response amplitudes as a function of the 
fractional differentiation exponent, varying within the interval from zero to one (see Figs 
2 and 3). 

2. NEW FRACTIONAL TYPE RHEOLOGIC MODELS OF IDEAL MATERIALS  

Let us identify the features and properties inherent to each material body. The 
dominance of specific characteristics depends on both the internal structure of the material 
and external influences. These influences may include factors such as the magnitude of the 
applied load, the amount of transferred heat, the rate of loading, or the speed of 
deformation. Under the influence of an external load, a Newtonian (ideally viscous) fluid 
flows, as it offers no resistance to sheer stress. Consequently, once the load is removed, the 
fluid does not return to its original configuration prior to loading, indicating a permanent 
deformation. 
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Figure 2. Elements of rheological models of ideal materials: a) Hooke ideal elastic 
element; b) Newton ideal viscous fluid linear element; c) New Newton ideal viscous 
fluid, fractional type, element; d) Bare de Saint Venant ideal plastic element; e) New 

Faraday ideal piezoelectric element (See Ref [1]) 

The yielding of a material of a solid body occurs when the intensity of the load exceeds 
the yield point for that material. Then we are talking about the plastic flow of material in a 
stressed body, as well as the accompanying plastic deformation. Plastic flow can take place 
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only under mechanical load and can be lubricated so that it does not depend on time or 
temperature. After the end of the load, the material does not return to the configuration of 
the natural state before the deformation - the configuration of the undeformed body.  

The difference between the properties of Newton's ideally viscous fluid, viscous flow, 
and Saint Venant's ideally plastic body, plastic flow, is that plastic flow requires the loading 
of the body to be such that the yield point is exceeded, while viscous flow can cause and 
quite a small load. In this case, after the cessation of the action of the load, the Saint 
Venant's ideally plastic body material does not return to the initial configuration of the 
natural state. The rate of deformation decreases as the load decreases and becomes equal 
to zero after the load is removed. When the loads are such that they do not exceed a certain 
yield point, the body is only deformed elastically. 

 The property of elasticity is reflected in the fact that after the cessation of the action of 
forces, the deformed Hooke's ideal elastic body returns to its natural state, without internal 
stresses and to the configuration of the original undeformed state. 

In the previous part, we listed the basic mechanical properties of ideal bodies, the basic 
properties of the materials from which they are most often made. Each of these basic 
properties represents the basic classical rheological models of elasticity, viscosity and 
plasticity. 

 Real bodies have coupled enumerated properties, so more complex models with 
coupled structures can be considered. 

The basic material models are (See Fig. 2.): 
* Hooke's ideally elastic material – a solid body with the property of ideal elasticity 

(See Figure 2.a)); 
* Newton's ideal viscous material - viscous fluid with the property of viscous fluid flow 

(See Figure 2.b)); 
* Saint Venant's ideal plastic material - a rigid body with the property of plastic yielding 

when the load exceeds the yield point (See Fig. 2.d)); 
This manuscript is part of a comprehensive scientific research project focused on 

developing a new series of rheological models for materials, as well as discrete dynamic 
rheological systems of fractional type. The research has yielded multiple scientific 
contributions, with this manuscript representing the foundational work. It was initially 
submitted to the Journal Applied Mathematical Modelling one year ago. A month later, the 
journal informed the author of a high volume of pending submissions and proposed 
transferring the manuscript to one of four alternative Elsevier journals within the highest 
scientific category according to the KoBSON classification (M21a). The author selected 
the Journal of Engineering Science (M21a), where the manuscript remained under editorial 
consideration for nearly eight months before a second transfer proposal was made—again 
including Applied Mathematical Modelling, the original journal of submission. 
Meanwhile, four related articles presenting additional results from this research have been 
published in journals classified under the M21 category. The bibliographic details of these 
articles are listed in the reference section under entries [18–21], collectively representing 
the full scope of the new scientific findings. 

In this paper, we intend to introduce two more ideal models based on their 
characteristics. The first new model is a generalization of the model of Newton's ideally 
viscous material based on the constitutive relationship between the normal stress and the 
rate of axial dilatation by derivation of non-integer order, by introducing a differential 
operator of non-integer, fractional order (Caputo derivative, see Refs 23-26])   𝑓𝑓𝑓𝑓𝑓𝑓 0 <
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(for example, [ ]zt,z εσ α
αα DE= ), in which    is determined by an exponent 10 << α      

between zero and one. It is a generalization of the viscous dissipative element and includes 
it. 

The second element we introduce is named after Faradey, and it is Faradey's piezo-
electric element, which has the property of coupled fields of mechanical and electrical 
properties. The constitutive relation gives connections between mechanical normal stress 
𝜎𝜎𝑧𝑧 and mechanical axial dilation 𝜀𝜀𝑧𝑧 with dielectric displacement and electric voltage of the 
electric field of polarization of the body, which is formed by the electric polarization of the 
material during the mechanical deformation and stress of the body. 

The Fig. 2 shows the models of five of these five basic rheonomic elements. 
We will illustrate the characteristic properties of ideal materials with elementary 

mechanical properties for the case of axial stress - an ideal homogeneous and isotropic state 
of normal stress in all points of the cross-section of a experimental resistance sample in the 
form of a rod or tube made of homogeneous and isotropic material stressed to axial stress. 
The figure shows the basic rheological elements, including the new basic model of 
fractional type, modified Newton's ideal viscous fluid material, fractional type, as well as 
the basic model of piezo-electric type Faraday's ideal piezo-electric material with coupled 
fields of mechanical and piezo- electrical state of the material. 

We are now compiling a list of basic models of ideal materials, which we have already 
listed, according to their basic properties, and whose schematic representation is shown in 
the Fig. 2: 

1* Model of Hooke's ideally elastic material - test tube axially stressed with indicated 
normal stress 𝜎𝜎𝑧𝑧 at the points of cross-sections and expansion-dilatation  𝜀𝜀𝑧𝑧 in the axial 
direction; The constitutive relation is zz εσ E=  and gives the connection between the 
normal stress 𝜎𝜎𝑧𝑧  in the cross-section of the test tube and the dilation 𝜀𝜀𝑧𝑧of linear elements 
in the axial direction and the material constant 𝑬𝑬, which is the modulus of elasticity and is 
determined experimentally. Basic dimensions: for normal stress 𝜎𝜎𝑧𝑧 is forces per unit area; 
for dilation 𝜀𝜀𝑧𝑧, is the increment of length by length, or dimensionless size; for the modulus 
of elasticity 𝑬𝑬  is of forces per square length, or surface area (See Fig. 2.a)). 

2* Model of Newton's ideally viscous fluid – axial fluid flow stressed axially, with 
indicated normal stress 𝜎𝜎𝑧𝑧 at the points of transverse cross-sections of the fluid flow and 
velocity dilatation 𝜀𝜀𝑧̇𝑧  of linear fluid elements in the axial direction; The constitutive 
relation is zz εσ α 1==E  and gives the connection between the normal stress 𝜎𝜎𝑧𝑧 in the fluid 
flow in the cross sections of the fluid flow and the dilation rate 𝜀𝜀𝑧̇𝑧 of linear elements in the 
axial direction of the fluid flow and the material constant 𝑬𝑬𝛼𝛼=1 of the fluid, which is the 
viscosity coefficient and is determined experimentally. 

Basic dimensions: for normal stress 𝜎𝜎𝑧𝑧 is forces per unit area; for the rate of dilation 𝜀𝜀𝑧̇𝑧, 
the increase in length per total length, and in a unit of time, or a dimensionless quantity in 
a unit of time; for the viscosity coefficient 𝑬𝑬𝛼𝛼=1 is forces per square length, or surface area 
and time (See Fig. 2.b)). 

3* Model of Bare de Saint-Venant's ideally plastic material - test tube stressed axially 
with indicated normal stress 𝜎𝜎𝑧𝑧 at the points of transverse sections; The normal stress  𝜎𝜎𝑧𝑧  
is constant during plastic flow and does not depend on time and is equal to the plastic flow 
stress, which is determined experimentally for each material. The rate of dilation 𝜀𝜀𝑧̇𝑧 in the 
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axial direction of linear elements during plastic flow is proportional to the flow stress, 𝜀𝜀𝑧̇𝑧  
in which 𝑝𝑝 material constant, which is determined experimentally for each material. 

Basic dimensions: for normal stress 𝜎𝜎𝑧𝑧 is forces per unit area; for the rate of expansion 
𝜀𝜀𝑧̇𝑧 of plastic flow, the increase in length per total length, and in a unit of time, or a 
dimensionless quantity in a unit of time; for the coefficient 𝑝𝑝 of plastic flow, the square of 
the length, or the area per unit of force and unit of time (See Fig. 2.d)). 

4* Model of generalized Newton 's ideally viscous fluid, fractional type - axial flow of 
fluid, fractional type, stressed axially, with indicated normal stress 𝜎𝜎𝑧𝑧  at the points of 
transverse transitions of the fluid flow and dilatation rate [ ]zt εαD , fractional type, of line 
elements of the fluid in the axial direction; The constitutive relation is [ ]ztz εσ α

αDE=   and 
gives the connection between the normal stress 𝜎𝜎𝑧𝑧  in the axial flow of the fluid in the cross 
section of the fluid flow and the rate of dilation [ ]zt εαD , fractional type, of the linear 
elements of the fluid in the axial direction of the linear element flow of the fluid and the 
material constant 𝑬𝑬𝛼𝛼   of the fluid, fractional type, which is the viscosity coefficient of the 
fractional type fluid and is determined experimentally for each fluid, fractional type. 

The structural mark is: 
Basic dimensions: for normal stress 𝜎𝜎𝑧𝑧, cross-sections of fluid flow, fractional type is 

forces per unit area; for the axial speed [ ]zt εαD   of dilatation of the fractional type of line 
elements of the axial direction of the fluid flow, fractional type, is length increment by total 
length, and in units of time depending on the order of fractional differentiation, or 
dimensionless quantity in units of times depending on the order of fractional 
differentiation; for the viscosity coefficient 𝑬𝑬𝛼𝛼   of forces per square of length, or surface 
area and times to a degree corresponding to the order of fractional differentiation (See Fig. 
2.c)). 
5* Model of Faraday's ideal piezoelectric material model 𝑷𝑷𝑷𝑷 - material with the property 
of polarization of transverse contour surfaces when the test tube is subjected to axial stress 
by compression or extension. Denote the normal stress 𝜎𝜎𝑧𝑧 at the points of the cross-sections 
by 𝜎𝜎𝑧𝑧, the axial dilation by 𝜀𝜀𝑧𝑧, and the electric voltage 𝐸𝐸  of the polarization axis by 𝐸𝐸. The 
constitutive relation of Faraday's ideal piezoelectric material model are 𝐸𝐸𝑧𝑧 = −𝑔𝑔𝜎𝜎𝑧𝑧   and 
𝜀𝜀𝑧𝑧 = 𝑏𝑏𝐸𝐸𝑧𝑧  , and gives the relationship between the mechanical state of the normal stress 𝜎𝜎𝑧𝑧 
and the axial dilation𝜀𝜀𝑧𝑧 zε  and the electric state of the electric voltage 𝐸𝐸  of the polarization 
of the electric field of the piezoelectric material. Also, additional constitutive relations are 
in the forms:   𝐷𝐷𝑧𝑧 = 𝑏𝑏𝜎𝜎𝑧𝑧   and  zz eD ε=  , which are the mechanical normal stress 𝜎𝜎𝑧𝑧 at the 
points of the cross sections, the line elements dilation of elements  𝜀𝜀𝑧𝑧 in the axial direction 
and the electric voltage   
E   of the electric field of polarization, and  𝐷𝐷𝑧𝑧 = 𝑏𝑏𝜎𝜎𝑧𝑧 and  𝐷𝐷𝑧𝑧 = 𝑒𝑒𝜀𝜀𝑧𝑧  are dielectric 
displacements, while where 𝑔𝑔,  𝑒𝑒 and 𝑏𝑏    are the constants of the piezoelectric material, 
mechanical and electrical. The units of the material constants of the piezoelectric ideal 
material are:  𝐸𝐸�𝑉𝑉 𝑚𝑚� � , 𝑔𝑔�𝑉𝑉𝑉𝑉 𝑁𝑁� �  and  𝑏𝑏[𝑚𝑚 𝑉𝑉⁄ ] (See Fig. 2.e)). 

Such models of basic ideal materials with pure ideal properties can be combined into 
hybrid complex models, whereby one pair of models of basic materials can be connected 
in two ways (See Fig. 3.). 

a* serial – in a series, which is indicated by a horizontal line ''-'' between the elements.  
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and  
b* parallel, which is indicated by a vertical line ''/'' between the elements. 
The picture   shows the models of basic complex materials from two basic models of 

ideal materials, fractional type. 
We highlight, now, especially two basic complex models of basic hybrid complex 

materials (See Figs 3. a) and b); h) and m)). Their structural formulas are composed of two 
basic elementary models of ideal materials: the model of Hook's ideal elastic material and 
the model of modified Newton's ideal viscous fluid, fractional type. 

Connecting these two basic elementary models - elements is possible in parallel or in 
series. We will study the properties of these two basic hybrid complex material models, as 
they are found in each of the subsequent hybrid material models of hybrid more complex 
structures. 

* Modified or generalized Kelvin's or Voigt's model, fractional type, which contains in 
its structure the basic model of Hooke's ideally elastic element and the basic model of 
Newton's ideally viscous element of fractional type connected in parallel (See Figs 3. a) 
and h)). 

This model, a modified fractional-type Kelvin or Voigt model, is one of the two basic 
complex material models. It is one of the two basic complex models of ideal materials, of 
the fractional type, which contains their parallel connection and has no internal degrees of 
freedom of movement, but only one external degree of freedom of movement of one end 
of the element in relation to the other, for which we give detailed explanations in the section 
on rheological oscillators . 

Modified Kelvin's or Voigt's model of the fractional type, denoted by and it is one of 
the two basic complex models of ideal materials, created from two basic models of ideal 
materials connected in parallel, Hooke's ideally elastic and modified Newton's fractional 
fluid type and has structural formula ( )αα NHK /= . 

* Modified or generalized Maxwell's model of fractional type, is one of the two basic 
complex models of materials, 𝑴𝑴𝛼𝛼, ordinarily (serially) connected (See Figs 3. b) and m)) 
basic models of ideal materials Hooke's H  ideally elastic and modified and Newton's ideal 
fluid 𝑵𝑵𝛼𝛼 fractional type has the structural formula 𝑴𝑴𝛼𝛼 = (𝑯𝑯 −𝑵𝑵𝛼𝛼). 

This means that the complex model contains in its structure serially connected basic 
models of Hooke's ideally elastic element and the basic model of Newton's ideally viscous 
element, fractional type. 

This model, one of the two basic complex material models of the two basic models of 
identical materials, of the fractional type, which contains a series connection, has one 
internal degree of freedom of movement, in addition to one external degree of freedom of 
movement of one end of the complex model in relation to the other, for which we give 
detailed explanations in to the part about rheological dynamic systems of the crawler type. 
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Figure 3. New generalized complex rheological models, fractional type, of ideal 
materials with generalized Newtonian element, fractional type,  of viscous fluid: a) 

Generalized basic complex Kelvin-Voigt, fractional type,  model of elasto-viscous solid 
material; b) Generalized complex Maxwell's, fractional type, model of viscoelastic fluid; 

c) Generalized complex Bingam's, fractional type, model of elasto-visco-plastic solid 
material; d) Generalized complex Lethersich's, fractional type, model of visco-elastic 
fluid; e) Generalized complex Jeffrey's, fractional type, visco-elastic fluid model; f) 

Generalized complex Jeffrey-H's, fractional type, model of an elasto-viscous solid body; 
d) Generalized  complex Burgers, fractional type, model of visco-elastic fluid; h) 

Decomposition and analysis of the state of normal stresses in the cross-section points of 
the generalized complex Kelvin-Voigt, fractional type, model of elasto-viscous solid 

material; m) Decomposition and analysis of the state of axial dilatations of the 
generalized basic complex Maxwell, fractional type, model of a viscoelastic fluid  
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In both of the fundamental complex material models, the formation of the stress–strain 
relationship is significantly influenced by stress and dilatation, particularly through the rate 
of dilatation and the role of time. 

Let us now examine in detail how time affects the relationship between stress and strain 
in these well-defined basic models of complex materials. 

Now let's list the constitutive relations for simple elements - models based on individual 
properties of ideal materials: 

* ideally elastic solid Hooke's element 
   zz εσ E=       (1) 

* ideally viscous fluid Newtonian element 
   zz εµσ =       (2) 

* ideally viscous fluid generalized Newton element of fractional type 
  [ ]zt,z εσ α

αα DE=       (3) 
* ideally a piezoelectric Faraday element 

  zz gE σ−=  
  zz bD σ=  and 𝐷𝐷𝑧𝑧 = 𝑒𝑒𝜀𝜀𝑧𝑧  
   𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑘𝑘 ,       (4) 
 𝐷𝐷𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3),   𝐷𝐷𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑗𝑗𝑗𝑗(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3), 
 ,kkijij Ee−=σ 𝜀𝜀 = 𝑏𝑏𝑏𝑏. 

3. PROPERTIES OF NEW FRACTIONAL-ORDER RHEOLOGICAL MODELS FOR IDEAL 
MATERIALS AND THEIR CONSTITUTIVE DIFFERENTIAL RELATIONS    

3.1  Modified or generalized Kelvin's or Voigt's model, now, fractional type 
surface. 

A modified or generalized, fractional-type, Kelvin-Voigt’s model, which is one of the 
two basic hybrid complex material models, and contains a parallel bound Hooke's ideally 
elastic element and a generalized Newtonian ideally viscous fluid element, fractional-type, 
whose constituents are relations between normal stress 𝜎𝜎𝑧𝑧 and axial dilatation  𝜀𝜀𝑧𝑧, i.e. fast 
axial dilatation [ ]zt εαD , of the fractional type, in the form (see Fig. 4, decomposition idea): 

   z,z εσ E=1                (5) 

  [ ]zt.,z εσ α
αα DE=2                (6) 

where 𝐷𝐷𝑡𝑡𝛼𝛼[•] is the differential operator of fractional order is α , where the fractional order 
differentiation exponent α  has values greater than zero and less than or equal to one:      
0 < 𝛼𝛼 ≤ 1 

In this paper, we will use the following differential operator of non-integer (fractional) 
order, defined by the following derivative and integral (Caputo fractional order derivative 
as differential operator fractional order α , see Refs [22, 25-30]): 

( )[ ] ( ) ( )( ) ( )
( )

( )
10

1
1

0

≤<
−−Γ

=== ∫ ατ
τ
τε

α
εεε α

α
α

α
α for,d

tdt
dt

dt
tdt

t
z

z
z

ztD                     (7)    
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in the time interval in the branches from 0 to t , applied over the time function ( )tzε . That 
is, applied to some independent generalized time-varying function, which in this case is 
axial dilatation 𝜀𝜀𝑧𝑧(𝑡𝑡). In the previous differential operator [ ]•α

tD  of fractional order, 𝛼𝛼 is a 
rational number between 0 and 1, 0 < 𝛼𝛼 ≤ 1. α  is a parameter-exponent of 𝛼𝛼𝑡𝑡ℎ fractional 
(non-integer) differentiation, fractional order 𝛼𝛼𝑡𝑡ℎ and 𝛼𝛼 is determined experimentally, 
depending on the application for certain purposes. When the exponent is equal to zero, 𝛼𝛼 =
0, then the application of the differential operator, fractional order [ ]•α

tD , gives the very 
same time function 𝜀𝜀𝑧𝑧(𝑡𝑡)- axial dilation, to which it was applied. When the exponent 𝛼𝛼, is 
equal to one, 𝛼𝛼 = 1, then the application of the differential operator, fractional order [ ]•α

tD  
gives the first-time derivative 𝜀𝜀𝑧̇𝑧(𝑡𝑡) of the time function to which it is applied. This property 
of the differential operator of fractional order [ ]•α

tD , when its exponent α  of fractional 
order, has values of rational numbers and in the interval   0 < 𝛼𝛼 ≤ 1, including its limit 
values, allows us to define with one expression both integer derivatives and derivatives of 
fractional order. And it is a useful mathematical description in various applications. In the 
previous definition of the differential operator of fractional order 𝐷𝐷𝑡𝑡𝛼𝛼[•], the label 
represents the special Gamma function  𝛤𝛤(1 − 𝛼𝛼), which is defined in the form of an 
integral (see Refs [9, 10, 12, 28]): 

( ) 011
0

>−=−Γ −
+∞

−∫ αα α ,dtte t             (8) 

in the function of the exponent α   of the differential operator of fractional order α , or in 
the general case in the function of the variable x , in the form: 

 ( ) 01

0

>=Γ −
+∞

−∫ x,dttex xt    ( ) ( ) 01 >Γ=+Γ x,xxx           (9) 

Generalized complex rheological models, fractional type, of ideal materials with 
generalized Newton element, fractional type, of viscous fluid: Generalized basic complex 
Kelvin-Voigt, fractional type, model of elasto-viscous solid material-decomposition and 
analysis of the state of normal stresses in the cross-section points of the generalized 
complex Kelvin-Voigt, fractional type, model of elasto-viscous solid material; b) surface 
of the subsequent elasticity of the modified Kelvin-Voigt model of the fractional type. 
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Figure 4. The structure of a basic complex model of ideal materials, fractional type, and 
contributions of the properties in form of dilatation surfaces: a) structure of modified-

generalized  Kelvin-Voigt model of fractional type, which contains in its structure, 
parallel connected basic elements: Hooke's ideally elastic element and basic Newton’s  

ideal viscous element of the fractional type; b) surface of the subsequent elasticity of the 
modified Kelvin-Voigt model of the fractional type in space coordinate: axial dilatation 
𝜀𝜀𝑧𝑧(𝑡𝑡), time t  and exponent 𝛼𝛼 of fractional derivative in interval from zero to one, 0 <

𝛼𝛼 ≤ 1, by expression (20) 

 The resulting normal stress at the ends of that modified Kelvin-Voigt model of the 
fractional type - the basic complex model of the ideal material, is equal to the sum of the 
normal stresses of the elements connected in parallel (see Fig. 4): 

 [ ]ztz,.z,zz εεσσσ α
αα DEE +=+= 2           (10) 

In the case of rest of the modified Kelvin-Voigt model of the fractional type and at 
a very slow load change, when we can assume that the rate of dilation of the fractional type 
is small [ ] 0→zt εαD  and tends to zero, the material behaves as the basic Hooke's ideally 
elastic material, and the normal stress of the material is almost proportional to dilation 

z\z εσ E→ : 

[ ] 0→zt εαD  ⇒  z\z εσ E→            (11) 
If the normal voltage at the ends of the modified Kelvin-Voigt model of fractional 

type suddenly increases from zero to some final value, 𝜎𝜎𝑧𝑧,0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which remains 
constant in the following time interval, then we are surprised by the behavior of the model 
of this basic model of complex material. 

If we assume that normal stress suddenly increases to some value 𝜎𝜎𝑧𝑧,0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐and 
remains constant, then it is: 
 [ ] const,zztz ==+ 0σεε α

αDEE            (12) 
In order to find the dependence of axial dilatation ( )tzε  on time, at a constant value of the 
normal stress 𝜎𝜎𝑧𝑧,0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which is exposed to the modified Kelvin-Voigt model, 
fractional type, it is necessary to solve the ordinary differential equation (12) of fractional 
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order. To that end, we first apply the Laplace transform to the previous relation - an 
ordinary differential equation of fractional order, and obtain (see Refs [12, 28]): 
 { } [ ]{ } { }0,zztz σεε α

α LDLL =+EE           (13) 

As: { }
p
11 =L , it follows that:  { }

p
p ,z

z
0σ

ε α
α =+EEL , or in the form: 

 { }
α

α

σ
ε

pp
,z

z EE +
=

10L             (14) 

The solution for the axial dilation ( )tzε  as a function of time of the modified Kelvin-Voigt 
fractional-type model, the basic complex fractional-type model, when suddenly subjected 
to a constant normal stress 𝜎𝜎𝑧𝑧,0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and held under that constant normal stress 0,zσ , 

is the inverse Laplace transform ( ) { }\t zz εε LL 1−=  of the last expression (14): 

  { }
αα

σ
ε

pp
,z

z

E
EE +

⋅⋅=
1

110L           (15) 

Now, it is necessary to determine the approximate analytical expression as a function of 
time, ( ) { }\t zz εε LL 1−=  , as the inverse Laplace transform of the previous expression 
and cut in the time domain. 

 ( ) { }


















+
⋅⋅== −−

αα

σ
εε

pp
t ,z

zz

E
EE 1

11011 LLL        (16) 

Therefore, the expression 
αα

σ

pp
,z

E
EE +

⋅⋅
1

110  must be developed in order of powers 

p , which is a complex number, using the formula (see Refs [26, 27]): 

          (17) 
And get the following line: 

 { } ( ) 1

0

0 11 −
∝

=
∑ 






−+⋅⋅≈ αασ

ε k

k

k
k,z

z p
p E

E
E

L          (18) 

The inverse Laplace transform now gives an analytically approximate expression 
for the time-domain axial dilatation ( )tzε  for the basic complex modified Kelvin-Voigt 
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fractional-type model, when suddenly subjected to constant normal stress 𝜎𝜎𝑧𝑧,0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
and held under constant normal stress 𝜎𝜎𝑧𝑧,0  in the following form: 

 ( ) { } ( )


















−+⋅== −

∝

=

−− ∑ 1

0

101 11 αασ
εε k

k

k
k,z

zz p
p

t
E

E
E

LLL        (19) 

The inverse Laplace transform of (19) gives  ( ) { }\t zz εε LL 1−=  and  now gives an 

analytically approximate expression for the axial dilation ( )tzε  in the time domain: 

 ( ) ( )
( )

( )










−+Γ


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=
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k
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ε
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0

0

E
E

E
                    (20) 

since it is: 
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In Fig. 2., the structure of a basic complex Kelvin-Voigt model of ideal materials, fractional 
type, and contributions of the properties in form of dilatation surfaces are presented. Fig. 
2.a) shows the structure of modified-generalized Kelvin-Voigt model of fractional type, 
which contains in its structure, parallel connected basic elements: Hooke's ideally elastic 
element and basic Newton’s ideal viscous element of the fractional type.  Fig. 2.b) shows 
the surface of the subsequent elasticity of the modified Kelvin-Voigt model of the 
fractional type in space coordinate: axial dilatation 𝜀𝜀𝑧𝑧(𝑡𝑡), time 𝑡𝑡 and exponent α  of 
fractional derivative in interval from zero to one, 0 < 𝛼𝛼 ≤ 1. 

Kelvin-Voigt classical model is special case of previous generalization. In the case 
when 𝛼𝛼 = 1, respectively 𝑬𝑬𝛼𝛼=1 = 𝜇𝜇, when it is a classical Newton ideal viscous fluid in 
which the normal stress is proportional to the rate of axial dilation 𝜀𝜀𝑧𝑧(𝑡𝑡), that is, to the first 
derivative of the dilation, then, if the Kelvin-Voigt classical model is suddenly subjected 
to the normal stress (see the diagram on the right in Fig. 4.b)) and keep the normal stress 
constant over time, the dilatation continues to increase with time, up to some value  0,zε  ,  

for which it is  𝜀𝜀𝑧𝑧 = 𝜎𝜎0
𝑬𝑬
�1 − 𝑒𝑒−

𝑬𝑬
𝑬𝑬𝛼𝛼=1

𝑡𝑡 +� ≤ 𝜀𝜀𝑧𝑧,0, and then begins to decrease with time to 

zero 𝜀𝜀𝑧𝑧 = 𝜎𝜎0
𝑬𝑬
𝑒𝑒−

𝑬𝑬
𝑬𝑬𝛼𝛼=1

𝑡𝑡. 
Fig. 5 a) (in left) shows the decomposition of the Kelvin-Voigt classical model. Fig.5 

b)  (in right) shows graph of the axial dilatation, in the case that the Kelvin-Voigt classical 
model is suddenly subjected to the normal stress and keep the normal stress constant over 
time, the dilatation continues to increase with time, up to some value  𝜀𝜀𝑧𝑧,0,  𝜀𝜀𝑧𝑧 ≤ 𝜀𝜀𝑧𝑧,0, and 

then begins to decrease with time to zero by time function in the form  𝜀𝜀𝑧𝑧 = 𝜎𝜎0
𝑬𝑬
𝑒𝑒−

𝑬𝑬
𝑬𝑬𝛼𝛼=1

𝑡𝑡. 
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             a)            b) 

Figure 5. The Figure (left) shows a) the decomposition of the Kelvin-Voigt classical 
model; b) if the Kelvin-Voigt classical model is suddenly subjected to the normal stress 
and keep the normal stress constant over time, the dilatation continues to increase with 

time, up to some value  𝜀𝜀𝑧𝑧,0 ,   and then begins to decrease with time to zero 

If, on the other hand, the dilatation is limited to be constant over time, then the dilatation 
rate is equal to zero, and the normal stress (see the picture below sketch Figure 5.b)) does 
not decrease with time, the normal stress remains constant. 

 From the last analogy and the expression for the change of axial dilation, we see that 
the dilation of the classical Kelvin-Voigt model approaches asymptotically the limit value 
with the passage of time. This material behaves similarly during sudden unloading. Figure 
5.b) (sketch on the right) shows the dependences of normal stress and axial dilatation on 
time. From that graph, one can see the characteristic property of viscoelasticity of the 
material, the lagging behind the change in axial dilatation after the normal stress. This 
property is also subsequent elasticity. Although in this material there is a viscous resistance 
to deformation, it is still a solid body, not a fluid. Voigt studied this material by studying 
the phenomenon of damping oscillations in crystals. 
 

3.2 Modified or Generalized Fractional-Order Maxwell Model  

Modified or generalized  Maxwell's complex basic model, of fractional type, 𝑴𝑴𝛼𝛼, 
whose structural formula is 𝑴𝑴𝛼𝛼 = (𝑯𝑯 −𝑵𝑵𝛼𝛼), when Newton's viscous element of fractional 
type 𝑵𝑵𝛼𝛼 is entered into its structure, instead of classical Newton's viscous element 𝑵𝑵, a 
regular connection with Hooke's ideally elastic element 𝑯𝑯.  

This order-series  connection of Hooke's ideally elastic element 𝑯𝑯 and Newton's 
viscous element 𝑵𝑵𝛼𝛼, of the fractional type, has the property that, throughout the entire basic 
complex and modified Maxwell model, of the fractional type 𝑴𝑴𝛼𝛼, the resulting rate of 
dilation of the fractional type [ ]zt εαD  is equal to the sum of the rates of dilation of the 
components of the order-in series  connected elements, [ ]1,zt εαD  and [ ]2,zt εαD . In the sum 
of dilatation rates, of the fractional type, we use the dilation rates of the fractional type 

[ ]1,zt εαD  and [ ]2,zt εαD . 
The normal stress 𝜎𝜎𝑧𝑧  at the points of the cross-section is the same throughout the entire 

modified Maxwell's model 𝑴𝑴𝛼𝛼, of the fractional type, so we can write the constitutive 
relations of each basic rheological element in this series connection, so the normal stresses 
𝜎𝜎𝑧𝑧 in the dilatation function are (see Fig. 6.a): 
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1,zz εσ E=                       (21) 

 [ ] z.zt,z σεσ α
αα == 2DE                              (22) 

The rate of dilation of the fractional-type modified Maxwell model [ ]zt εαD , the 
fractional-type equal to the sum of the dilation rates, the fractional-type Newtonian viscous 
element [ ]1,zt εαD  of the fractional-type and the Hooke's ideally elastic element [ ]2,zt εαD , 
in the form: 

 [ ] [ ] [ ]21 ,zt,ztzt εεε ααα DDD +=           (23) 

Since: 𝜀𝜀𝑧𝑧,1 = 𝜎𝜎𝑧𝑧
𝑬𝑬

  it follows   [ ] [ ]zt.zt σε αα DD
E
1

1 =   and [ ]
α

α σε
E

z
.zt =2D , it follows 

that resalting dilatation is a sum (see Fig. 4 a) of component axial dilatation: 

 [ ] [ ]
α

αα σσε
EE

z
ztzt += DD 1

          (24) 

When the fractional-type rate [ ]zt σαD    of change of normal stress approaches to zero 

[ ] 0→zt σαD , the material described by the modified fractional Maxwell model behaves like 
a viscous fluid. This is because the deformation, i.e. axial dilation 𝜀𝜀𝑧𝑧  of the body: 

[ ]ztz εσ α
αDE→ , increases indefinitely without any additional load. Upon unloading, 

the deformation in the ideally elastic (Hookean) element fully recovers, while the 
deformation resulting from the flow in the fractional-type viscous (modified Newtonian 
fluid) element 𝐍𝐍α, connected in series, remains unrecovered.  

If this material, a the fractional-type modified Maxwell model 𝑴𝑴𝛼𝛼 is suddenly loaded 
to some value of normal stress 𝜎𝜎𝑧𝑧,0, the corresponding elastic deformation occurs 
instantaneously in Hooke's ideal elastic element 𝜀𝜀𝑧𝑧,0 = 𝜎𝜎𝑧𝑧,0

𝑬𝑬
. This occures due to the sudden 

application of load at the very beginning of the observation period, the flow behavior of 
the serially connected fractional-type viscous element (modified Newtonian fluid) in the 
fractional Maxwell model does not immediately manifest. If the development of 
deformation (dilatation) is constrained—i.e., if the fractional-type rate of dilatation tends 
to zero [ ] 0→zt εαD —then the normal stress becomes a time-dependent function that must be 
determined. 
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Figure 6. The structure of second basic complex model of ideal materials and 
contributions of the properties in form of normal stress surface: a) Structure of the 

modified Maxwell model of the fractional type, which contains in its structure, connected 
in series: the basic Hooke's ideally elastic element and the basic Newton's ideally viscous 

element of the fractional type; b) Stress relaxation surface of the modified Maxwell 
model of the fractional type, in the coordinate system:  normal stress 𝜎𝜎𝑧𝑧, time 𝑡𝑡 and 

exponent α  of fractional derivative in interval from zero to one, 0 < 𝛼𝛼 ≤ 1, by 
expression (30) 

When the rate of change of the normal stress [ ]zt σαD   of the the fractional-type modified 
Maxwell complex element 𝑴𝑴𝛼𝛼 tends to zero [ ] 0→zt σαD , then the normal mechanical stress  
tends to a value proportional to the rate of dilation of the fractional type [ ]ztz εσ α

αDE→ : 

 [ ] 0→zt σαD  ⇒ [ ]ztz εσ α
αDE→           (25) 

In order to determine the dependence of normal stress on time, when we keep the 
material model of the modified Maxwell complex model, fractional type 𝑴𝑴𝛼𝛼, at some 
constant rate of dilatation, fractional type [ ]{ } const,,zzt =0εαD , we write that: 

 [ ] [ ]{ } const,,zzt
z

zt ==+ 0
1 εσσ α

α

α DD
EE

         (26) 

By applying the previous condition (26), we obtain a differential equation of fractional 
order, which can be solved using the Laplace transform. We then apply the Laplace 
transform to the functional relationship defined by equation (26)—the fractional-order 
differential equation. As a result of this transformation, we obtain the following expression: 

[ ]{ } { } [ ]{ }0
11

,,zztzzt εσσ α

α

α DLLDL =+
EE

. Then, by arranging the previous relation 

(26), we get: 

 { } [ ]{ }0
111

,,zztz p
p εσ αα

α

DL =+
EE

             (27) 
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That is, by solving the obtained relation by the Laplace transform ℒ{𝜎𝜎𝑧𝑧}, it follows that 
the Laplace transform of the normal stress ℒ{𝜎𝜎𝑧𝑧}, in the modified Maxwell complex 
element 𝑴𝑴𝛼𝛼, is of the fractional type in the form: 

 { } [ ]{ }
αα

α
α εσ

pp,,zztz

E
E

E
+

⋅⋅=
1

11
0DL          (28) 

 Now it is necessary to determine an approximate analytical expression for the 
normal stress 𝜎𝜎𝑧𝑧(𝑡𝑡)  as a function of time, a modified fractional Maxwell complex element 
𝑴𝑴𝛼𝛼 as the inverse Laplace transformation 𝜎𝜎𝑧𝑧(𝑡𝑡) = ℒ−1ℒ{𝜎𝜎𝑧𝑧}  of the previous expression 
(28 ) and move from the complex domain to the time domain. 

That's why we'll develop the expression [ ]{ }
αα

α
α ε

pp,,zzt

E
E

E
+

⋅⋅
1

11
0D   in order of 

powers by p , which is a complex number, using the previously cited formula (17), and 
follows: 

  { } [ ]{ } ( ) 1

0
0 11 −

∝

=
∑ 






−+⋅≈ ααα

α εσ k

k

k
k

,,zztz p
p E

EE DL      (29) 

The inverse Laplace transform 𝜎𝜎𝑧𝑧(𝑡𝑡) = ℒ−1ℒ{𝜎𝜎𝑧𝑧} of the previous expressionℒ{𝜎𝜎𝑧𝑧}, 
(29) , now gives an approximate analytical expression for the normal stress ( )tzσ  in the 
time domain, a modified fractional Maxwell complex element 𝑴𝑴𝛼𝛼, in power-order by time 
degrees form, of the form: 

( ) { } [ ]{ } ( )
( )

( )










−+Γ






−+⋅≈=

+−∝

=

− ∑ kk
tt

k

k

k
k

,,zztzz α
εσσ

α
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α 22
11

12

0
0

1

E
EE DLL   (30) 

because the: 
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Fig. 4 presents generalized complex rheological Maxwell models of fractional type for 
ideal materials, incorporating a generalized Newtonian viscous element of fractional order. 
In particular, Fig. 6.a illustrates the generalized fractional Maxwell model of a viscoelastic 
fluid, along with the decomposition and analysis of axial dilatation and normal stress states. 
The normal stress relaxation surface is shown, based on the approximate analytical 
expression (30), representing the time-dependent normal stress response of the fractional 
Maxwell model in a three-dimensional coordinate system:  normal stress 𝜎𝜎𝑧𝑧, time 𝑡𝑡 and 
exponent 𝛼𝛼 of fractional derivative in interval from zero to one, 0 < 𝛼𝛼 ≤ 1. 

From the previous solution (30), as well as from the surface plot shown in Fig. 6b, it is 
evident that the normal stress 𝜎𝜎𝑧𝑧(𝑡𝑡) decreases asymptotically over time and tends toward 
zero, as illustrated in Fig. 6.b. This gradual reduction in normal stress under constant 
dilatation is known as normal stress relaxation of fractional type. 
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The material under investigation-represented by the modified Maxwell complex 
element 𝑴𝑴𝛼𝛼 of fractional type-exhibits viscoelastic fluid behavior. This model is 
particularly suitable for describing the mechanical response of metals at very high 
temperatures, as well as the behavior of betaines. 

Classical Maxwell's model with linear Newton element. In the case when 𝛼𝛼 = 1, 
respectively, 𝑬𝑬𝛼𝛼=1 = 𝜇𝜇when dealing with a classical Newtonian ideal viscous fluid in 
which the normal stress at the points of the cross-section of the fluid flow is proportional 
to the velocity of axial dilation,  zz εµσ =  i.e. the first derivative of axial dilation, then, if 
the classical Maxwell element, suddenly subjected to that normal stress (see the upper 
sketch in the Fig. 7.) and keeping the normal stress constant over time, the axial dilatation 

continues to increase with time ccording to the law 𝜀𝜀𝑧𝑧 = 𝜀𝜀0 �1 + 𝑒𝑒
𝑬𝑬

𝑬𝑬𝛼𝛼=1
𝑡𝑡�. 

If, on the other hand, the axial dilation of the classical Maxwell element is limited to be 
constant over time, then the rate of axial dilation is equal to zero, and the normal shape (see 
the lower sketch in the Fig. 5) decreases with time according to the exponential law  𝜎𝜎𝑧𝑧 =

𝜎𝜎0𝑒𝑒
− 𝑬𝑬
𝑬𝑬𝛼𝛼=1

𝑡𝑡. 
When the rate of change of the normal stress at the points of the cross-section of the 

material of the classic Maxwell element tends to zero 𝜎̇𝜎𝑧𝑧 → 0, that model of the material 
behaves like a viscous fluid, because: 𝜎𝜎𝑧𝑧 → 𝑯𝑯𝛼𝛼=1𝜀𝜀𝑧̇𝑧, because the deformation, 𝜀𝜀𝑧𝑧 that is, 
the axial dilatation 𝜀𝜀𝑧𝑧, of that material grows indefinitely without an increase in the load 
and the corresponding normal stress. When the material of the classical Maxwell element 
is unloaded, the axial deformation in the Hooke's ideally elastic element completely 
disappears, while the deformation due to fluid flow in the classical Newtonian viscous 
element-viscous fluid does not disappear in the serial connection. 

 
Figure 7 Graphs of stated of classical Maxwell model: of axial dilatation state during the 
time, in the case that normal stress is constant (upper graphs) and of normal stress during 

the time, in the case that axial dilatation is constant (lower graphs) 

If this material, a classical Maxwell element, is suddenly loaded to some value of normal 
stress 𝜎𝜎𝑧𝑧,0, it corresponds to an elastic axial deformation-dilation 𝜀𝜀𝑧𝑧,0 = 𝜎𝜎𝑧𝑧,0

𝑬𝑬
, created 

instantaneously in Hooke's ideally elastic element. This is because, due to the sudden load, 
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immediately at the beginning of the observation of the behavior of the material of the 
classical Maxwell element, the flow, in the serially connected classical Newtonian viscous 
element-ideally viscous fluid, does not come to the fore. If we prevent the development of 
deformation - axial dilatation, assuming that the rate of dilatation tends to zero, 𝜀𝜀̇ → 0, then 

the normal stress is equal to: 𝜎𝜎𝑧𝑧 = 𝜎𝜎0𝑒𝑒
− 𝑬𝑬
𝑬𝑬𝛼𝛼=1

𝑡𝑡. 
 As shown in Fig. 6 (b), the normal stress at points along the transverse cross-section 
decreases asymptotically over time and tends toward zero. This phenomenon—where 
normal stress decreases with time under constant axial dilatation—is known as normal 
stress relaxation at cross-sectional points. The material described by the classical Maxwell 
model behaves as a viscoelastic fluid and can be used to model the behavior of metals at 
very high temperatures, as well as the rheological properties of substances such as betaine. 

3.3 Comparative Analysis of Generalized Fractional Rheological Models: 
Modified Kelvin–Voigt Elasto-Viscous Solid vs. Modified Maxwell 
Viscoelastic Fluid 

The previous analysis of the features and properties of two basic complex rheologic 
material models, presented in Fig. 8. For comparison: 
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a)             b)    c)                           d) 

Figure 8. The comparison of structure of two basic complex models of ideal materials 
and comparison  of contributions of the properties in form of dilatation surfaces, i.e. 

normal stress surface: a) structure of modified Kelvin-Voigt model of fractional type, 
which contains in its structure, parallel connected basic elements: Hooke's ideally elastic 
element and basic Newton’s  ideal viscous element of the fractional type; b) surface of 
the subsequent elasticity of the modified Kelvin-Voigt model of the fractional type by 

expression (20); c) Structure of the modified Maxwell model of the fractional type, which 
contains in its structure, connected in series: the basic Hooke's ideally elastic element and 

the basic Newton's ideally viscous element of the fractional type; d) Stress relaxation 
surface of the modified Maxwell model of the fractional typem by expression (30); 

*Modified Kelvin-Voigt model of the fractional type (Figs 8.a and b), which contains 
in its structure, parallel coupled, the basic model of Hooke's ideally elastic element and the 
basic model of the modified Newton's ideally viscous element, fractional type 𝑵𝑵𝛼𝛼, and that 
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it is a solid body with the property of subsequent elasticity- It has a structural formula 𝑲𝑲𝛼𝛼 =
(𝑯𝑯/𝑵𝑵𝛼𝛼). 

* Modified Maxwell model of fractional type (Figs 8.c and d) , is one of the two basic 
complex models of materials, sequentially (serially) connected basic elements of ideal 
materials, Hooke's ideally elastic and modified Newton's ideal viscous fluid, fractional type  
𝑵𝑵𝛼𝛼 , has the property of voltage relaxation. It has a structural formula  𝑴𝑴𝛼𝛼 = (𝑯𝑯 −𝑵𝑵𝛼𝛼). 

To conclude, that two basic complex rheological models of materials, the modified 
Kelvin-Voigt model, fractional type 𝑲𝑲𝛼𝛼   and the modified Maxwell model, fractional type, 
𝑴𝑴𝛼𝛼 composed of the same basic models of the elements of ideal materials, Hooke's ideally 
elastic and modified Newton's of an ideal viscous fluid, fractional type 𝑵𝑵𝛼𝛼, connected in 
parallel in , that is, in order (serial) in , exhibit two important and qualitatively different 
properties. The first model is a solid body with the property of subsequent elasticity     
𝑲𝑲𝛼𝛼 = (𝑯𝑯/𝑵𝑵𝛼𝛼)   and the second model 𝑴𝑴𝛼𝛼 = (𝑯𝑯 −𝑵𝑵𝛼𝛼)  is an elastoviscous fluid with the 
property of normal stress relaxation. 

On the examples of the modified Kelvin-Voigt model of the fractional type 𝑲𝑲𝛼𝛼, as well 
as the modified Maxwell model of the fractional type 𝑴𝑴𝛼𝛼, we can see the structural 
formulas, which we defined based on the type of connection of the simple models, parallel 
or serial. These structural formulas are similar and in analogous with structural formulas 
in chemistry, as well as that the structure of rheological models can be expressed by 
rheological formulas. In the previous two examples, it can be seen that when connecting 
the basic elemental material models in series, the total elongation of the resulting 
rheological model is equal to the sum of the component elongations of the individual 
elements in the connection, while for the parallel joint the total normal stress is equal to the 
sum of the normal stresses, which occur in the parallel connected rheological elements. 

4. STRUCTURES OF OTHER GENERALIZED MORE COMPLEX RHEOLOGICAL MODELS OF 
FRACTIONAL TYPE         

 
The Figs 3. c), d), e), f) and  g)  show the structures of complex modified-generalized 

rheological models, fractional type: 
* Fig. 3. c) shows generalized modified Bingam model of ideal complex material, 

fractional type, with rheological structural formula 𝑩𝑩𝛼𝛼 = 𝑆𝑆𝑆𝑆.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉/𝑵𝑵𝛼𝛼 − 𝑯𝑯. 
* Fig. 3. d) shows generalized modified Lethersich model of ideal complex material, 

fractional type, with rheological structural formula 𝑳𝑳𝛼𝛼 = 𝑯𝑯/𝑵𝑵𝛼𝛼 − 𝑵𝑵𝛼𝛼. 
* Fig. 3. e) shows generalized modified Jeffry-H’s model of ideal complex material, 

fractional type, with rheological structural formula   𝑱𝑱𝑯𝑯𝛼𝛼 = 𝑯𝑯/(𝑯𝑯−𝑵𝑵𝛼𝛼). 
* Fig. 3. f) shows generalized modified Jeffry’s model of ideal complex material, 

fractional type, with rheological structural formula 𝑱𝑱𝛼𝛼 = 𝑵𝑵𝛼𝛼/(𝑯𝑯 −𝑵𝑵𝛼𝛼). 
* Fig. 3. g) shows generalized modified Burgers model of ideal complex material of 

fractional type, with rheological structural fatmule 𝑩𝑩𝑢𝑢,𝛼𝛼 = 𝑲𝑲 −𝑴𝑴 or 𝑩𝑩𝑢𝑢,𝛼𝛼 = (𝑯𝑯/𝑵𝑵𝛼𝛼) −
(𝑯𝑯 −𝑵𝑵𝛼𝛼). 

There are other ideal complex materials, constructed to explain some mechanical 
phenomena or properties, let us only list a few: 

* generalized modified Schwediff's model of ideal complex material of fractional type, 
with rheological structural formula 𝑺𝑺𝑆𝑆𝑆𝑆ℎ𝑤𝑤,𝛼𝛼 = 𝑯𝑯 − (𝑆𝑆𝑆𝑆.𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝑴𝑴𝛼𝛼). 
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* generalized  modified Poyting or modified Thompson ideal complex material model, 
fractional type, with rheological structural formula 𝑷𝑷𝑷𝑷𝒉𝒉𝛼𝛼 = 𝑯𝑯/𝑴𝑴𝛼𝛼. 

* generalized modified Trouton's or modified Rankin's model,  of ideal complex 
material, fractional type, with rheological structural formula 

ααα PThNTR −= . 
* generalized modified Schofield-Scot-Vlair ideal complex material model, fractional 

type, with rheological structural formula ααα KSBSS −= ,chwcch . 
In all of these listed ideal complex models, it is possible to replace some of the simple 

material models with elementary Faraday's ideal piezo-electric model of the piezo-electric 
material, or to add that element to them, in series (order) or parallel connection and obtain 
new models of rheological piezo-electric models of ideal materials with specific properties 
that we program with a specific structure. 

It is possible an arbitrary number of combinations of serial and parallel binding of 
properties of fractional rheological models,. Each of the structures requires analysis, and it 
should be borne in mind that each regular (serial) connection of Newton's viscous element, 
fractional type or linear type, introduces one internal degree of freedom of movement of 
the ideal material model. 

 We will further analyze the behavior of some of the listed models and the structures of 
complex rheological models of ideal materials under conditions of rapid loading or holding 
at constant loads. 

Let us analyze the component normal stresses and component axial dilations, as well 
as the rates of their changes, or through the structure of, in some of the complex rheological 
models of ideal materials, fractional type. 

4.1 Generalized modified Bingham's model of ideal complex material, fractional 
type 

* Generalized modified Bingham's model of complex ideal material, fractional type, 
with rheological structural formula 𝑩𝑩𝛼𝛼 = 𝑆𝑆𝑆𝑆.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉/𝑵𝑵𝛼𝛼 − 𝑯𝑯, is shown in Figure 7. left. 

The classic Bingham model of an ideal complex material (Figure 7.  right)  contains a 
parallel connection of the Saint Vemamt model of an ideally plastic material in parallel 
connection with Newton's model of an ideally viscous fluid, and this parallel connection is 
in turn connected with Hooke's model of an ideally elastic material. This connection 
determines the constitutive relations, that is, the equation of the connection between the 
normal stress and the axial dilation, that is, the rate of dilation in the form, see Fig. 9: 

 𝜎𝜎𝑧𝑧 = 𝑬𝑬𝜀𝜀𝑧𝑧,1 𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆� E
z

,z
σε =1 ,𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�       (31) 

  𝜎𝜎𝑧𝑧 − 𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑬𝑬 𝜀𝜀𝛼𝛼=1
̇
𝑧𝑧,,  𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| ≥ �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�                      (32) 
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Figure 9. Generalized Bingham model of an ideal complex material, fractional type (left)   

and the classic Bingham model of an ideal complex material (right) 

The modified Bingham model of an ideal material, fractional type, contains a parallel 
connection of the Saint Venant model of an ideal plastic material, in parallel connection 
with a modified Newton model of an ideally viscous fluid, fractional type, and this parallel 
connection is in series connection with the Hooke’s with this model of ideally elastic 
material. This connection determines the constitutive relations, i.e., the equations of the 
connection between normal stress and axial dilation, i.e., the rate of dilation, fractional 
type, in the form: 

    𝜎𝜎𝑧𝑧 = 𝑬𝑬𝜀𝜀𝑧𝑧,1,  𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, E
z

,z
σε =1 ,𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�                   (33) 

 [ ] StVzzztStVzz for ,, , σσεσσ α
α ≥=− DE        (34) 

 The rate of dilation, fractional type, through this modified Bingham model of an ideal 
complex material, fractional type, is equal to: 
 [ ] [ ] [ ]21 ,zt,ztzt εεε ααα DDD +=             (35) 
and how it is: 

    
E

z
,z
σε =1  thus, it follows [ ] [ ]zt.zt σε αα DD

E
1

1 = , StVzzfor ,σσ <               (36) 

     [ ] StVzz
StVzz
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, , σσ

σσ
ε
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−

=
E

D                          (37) 

And 

[ ] [ ] [ ] [ ] StVzzztztztzt for ,02,1, ,1 σσσεεε αααα <=+=
=

DDDD
E

            (38) 

[ ] [ ] [ ] [ ] StVzz
StVzz

ztztztzt for ,
,

2,1, ,1 σσ
σσ

σεεε
α

αααα ≥
−

+=+=
EE

DDDD                (39) 

This connection is the result of the fact that the model of Saint Venant's ideally plastic 
material is, by definition, rigid until the beginning of plastic yielding, i.e. up to a certain 
normal stress 𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆, i.e. while the normal stress in the complex model is less than that value 
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|𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, which is the condition of plasticity |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�. When plastic flow 
begins, nominal stress remains constant and equals the value of plastic flow stress. 

Until the beginning of plastic flow in the structural element, the model of Saint Venant's 
ideal plastic material, until the normal stress was reached in the modified Bingham's model 
of the ideal complex material, fractional type, the normal stress did not reach the value 
𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑉𝑉, that is, while the normal stress in the complex model |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, model behaves 
like Hooke's model of an ideally elastic material. In that interval, the constitutive 
relationship   𝜎𝜎𝑧𝑧 = 𝑬𝑬𝜀𝜀𝑧𝑧,1, 𝑓𝑓𝑓𝑓𝑓𝑓|𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�  between the normal stress and axial 
expansions is valid. 

When plastic yielding has started in a structural element, in an element of Saint Venant's 
ideal plastic material, when further yielding continues in it, and when the normal stress is 
greater than the yield stress, that is|𝜎𝜎𝑧𝑧| ≥ �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, when , in the complete modified 
Bingham ideal complex material model, of fractional type, dilation rate, of fractional type, 
behaves according to relatiom: 

[ ] [ ] [ ] [ ] StVzz
StVzz

ztztztzt for ,
,

2,1, ,1 σσ
σσ

σεεε
α

αααα ≥
−

+=+=
EE

DDDD .          (40) 

We can conclude that the behavior in the complete modified Bingam model of an ideal 
complex material, fractional type, is in two phases. The first phase is the behavior of the 
model before reaching the normal yield stress |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, when it behaves like Hooke's 
model of an ideally elastic material, and then the constitutive relation applies 𝜎𝜎𝑧𝑧 =
𝑬𝑬𝜀𝜀𝑧𝑧,1,  𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑧𝑧| < �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�. In the second phase, the model behaves according to the 
constitutive relationship, the relationship between the rate of dilation of the fractional type 
and the normal stress in the form (40) and similar to the behavior of the modified Maxwell 
model, fractional type, for which we derived the constitutive relationship of the form (24) 
of the relationship between the rate of dilation, the fractional type and the normal stress. 
But those relations are different, but not identical, because the plastic deformations remain 
permanent, so when the normal stress decreases, new constitutive relations should be 
written. 

But for this phase, according to the mathematical formalism, we can determine the 
characteristic behavior of this material- modified Bingham model of an ideal complex 
material, fractional type, in this phase of behavior, and that if we keep the material at a 
constant value of the axial dilation velocity, which tends to zero, until settling to a constant 
value, normal stress relaxation can occur in the material. 

If we now assume that the behavior of the modified Bingam model of an ideal complex 
material, fractional type, is in the second phase (40), and that further the rate of dilation, 
fractional type, decreases and tends to zero [ ] 0→zt εαD  and that we keep the element at 
that small rate of dilation, fractional type [ ]0zt εαD , then the ordinary differential equation, 
of fractional order by normal stress, has the following form: 
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E
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E
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Then, as in the previous consideration, applied the Laplace transform ℒ, so we get: 
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that is, 
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After developing in the order of series of the complex number 𝑝𝑝 , we get: 
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 Using the inverse Laplace transform ℒ−1, we get: 
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 Finally, the change of the normal stress at the points of the cross-sections of the model, 
in the second stress phase of the modified Bingam model of the ideal material, fractional 
type, when |𝜎𝜎𝑧𝑧| ≥ �𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆�, that is, when plastic flow is present in the structural element, in 
the element of Saint Venant's ideal plastic material, we get normal stress as a function of 
time in the form: 
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This form of the previous expression (47) indicates that in this stress phase of the 
modified Bingam model of an ideal complex material, fractional type, the phenomenon of 
stress relaxation at constant dilation is present. 

4.2 Generalized modified fractional Prandtl's model of ideal complex material. 

Now, for example, let's consider, for example, a Prandtl body, which represents a body 
with the following properties: The material behaves like Hooke's ideally elastic material, 
as long as the normal stress is lower than the normal stress of plastic flow, and the total 
expansion consists of axial elastic expansion 𝜀𝜀𝑧𝑧,𝐻𝐻 and 𝜀𝜀𝑧𝑧,𝐾𝐾 ,  𝜀𝜀𝑧𝑧,𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   axial plastic 
dilatations: 
  H *  𝜀𝜀𝑧𝑧,𝐻𝐻 = 1

𝑬𝑬
𝜎𝜎𝑧𝑧,𝐻𝐻             (48) 

  and  
  P *    𝜀𝜀𝑧̇𝑧,𝑆𝑆𝑆𝑆𝑆𝑆 = 1

𝑷𝑷
𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆                 (49) 

  Let the rate of dilation 𝜀𝜀𝑧̇𝑧,𝑃𝑃 of plastic flow be determined by the following relation: 
   𝜀𝜀𝑧̇𝑧,𝑃𝑃 = 1

𝑬𝑬
𝜎𝜎𝑧𝑧,𝐻𝐻 + 1

2𝑷𝑷
𝜎𝜎𝑧𝑧,𝑆𝑆𝑆𝑆𝑆𝑆                                      (50) 

  The normal yield stress and the axial dilatation at which yielding begins determine 
the yield point. For example, the flow is determined by introducing a certain hypothesis 
that is in better or weaker agreement with the experiment. There are different hypotheses 
about plastic flow. 
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4.3 Generalized modified fractional Lethersich's model of ideal complex 
material. 

Generalized modified Lethersich model of ideal complex material, fractional type, 
shown in Figure 10 (left),  is  with rheological structural fatmule 𝑳𝑳𝛼𝛼 = 𝑯𝑯/𝑵𝑵𝛼𝛼 − 𝑵𝑵𝛼𝛼. 

The classic Lethersich model of an ideal complex material, shown in Figure 8 (right), 
contains parallel connected models of Hooke's element of an ideally elastic material and 
Newton's element of an ideally viscous fluid (which form in parallel the Kelvin-Voigt 
model of an ideal material with the ability of subsequent elasticity) and in regular-serially  
connection with the model of Newton's element of an ideally viscous fluid. 

Let us now denote by 𝜀𝜀𝑧𝑧,𝑁𝑁  and  𝜀𝜀𝑧𝑧,𝐾𝐾  the specific axial deformations - axial dilatations 
of Newton's model of an ideal viscous fluid and Kelvin-Voigt's model of an ideal solid 
elasto-viscous material, and for the total axial dilatation 𝜀𝜀𝑧𝑧 of Lethersich's model of an ideal 
complex material, which is an ordinal-serially connection of the Kelvin-Voigt model of an 
ideal body and Newton's model of an ideal viscous fluid, we get as in the sum of these axial 
dilatations: 𝜀𝜀𝑧𝑧 = 𝜀𝜀𝑧𝑧,𝑁𝑁 + 𝜀𝜀𝑧𝑧,𝐾𝐾. 

The constitutive relation -connection between the normal stress at the points of the 
cross-section of the complex model, axially stressed and axial dilations for Lethersich's 
model of an ideal material, is obtained from the relation of the sum of component velocities 
of axial dilations in the form: 𝜀𝜀𝑧̇𝑧 = 𝜀𝜀𝑧̇𝑧,𝑁𝑁 + 𝜀𝜀𝑧̇𝑧,𝐾𝐾. For Newton's model of an ideal viscous 
fluid, in the form: 

  
1=

=
α

σε
E

z
N,z               (51) 

while for Kelvin-Voigt's ideal body model, the sum of normal stresses is in the form: 

  K,z,K,zK,z εεσ α 11=+= EE                    
21,

z
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=
α

σε
E

         (52) 

It follows that: 
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in which 𝜀𝜀𝑧𝑧,𝐾𝐾,𝑜𝑜 is the initial the axial dilation of Kelvin-Voigt's ideal model of an ideal 
body. Then differentiating the previous expression for the axial dilatation ion (53) of the 
Kelvin model of an ideal body and adding the axial dilatation rate 𝜀𝜀𝑧̇𝑧,𝑁𝑁 = 𝜎𝜎𝑧𝑧

𝑬𝑬𝛼𝛼=1,2
  of the 

Newton’s  model of an ideal viscous fluid to the axial dilatation rate 𝜀𝜀𝑧̇𝑧,𝐿𝐿of the Lethersich 
model of an ideal complex material, we get the following expression: 
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The modified Lethersich model of an ideal complex material, fractional type, which is 
shown in Figure, contains parallel connected models of Hooke's model of an ideally elastic 
material and Newton's model of an ideally viscous fluid, fractional type (which together 
form, in a paralel connection, a modified Kelvin’s model of complex material, fractional 
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type, with the ability of subsequent elasticity) and in serially connection with the 
Newtonian element model of an ideal viscous fluid, fractional type. 

Let us now denote by 𝜀𝜀𝑧𝑧,𝑁𝑁  and  𝜀𝜀𝑧𝑧,𝐾𝐾    the specific axial deformations - axial dilations 
of the Newton’s element of an ideally viscous fluid, fractional type, and the modified 
Kelvin model of an ideal complex solid elasto-viscous material, fractional type, and for the 
total axial dilatation 𝜀𝜀𝑧𝑧of the modified Lethersich model of an ideal material, fractional 
type, (which is an serial connection of the modified Kelvin model of an ideal body of 
fractional type and Newton's model of an ideal viscous fluid, fractional type), we get, as in 
the sum of these axial dilatations: 𝜀𝜀𝑧𝑧 = 𝜀𝜀𝑧𝑧,𝑁𝑁 + 𝜀𝜀𝑧𝑧,𝐾𝐾. 

The constitutive relation-connection between normal stress and axial dilation for the 
modified Lethersich model of an ideal complex material, fractional type, is obtained from 
the relation of the sum of component velocities of axial dilations in the form: 𝜀𝜀𝑧̇𝑧,𝐿𝐿 = 𝜀𝜀𝑧̇𝑧,𝑁𝑁 +
𝜀𝜀𝑧̇𝑧,𝐾𝐾, that is, [ ] [ ] [ ]N,ztK,ztL,zt εεε ααα DDD += . For Newton's model of an ideal viscous 
fluid, fractional type is: 

  [ ]
α

α σε
E

z
N,zt =D                     (55) 

while for the modified model of Kelvin's ideal model of the ideal body, fractional type, the 
sum of the voltages is: 

  [ ]K,ztK,zK,z εεσ α
αDEE +=             [ ]
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Figure 10. Generalized Lethersich’s model of an ideal complex material, fractional type 

(left)   and the classic Lethersich’s model of an ideal complex material (right) 

      
From this it follows that the axial dilation is the solution of the inhomogeneous equation 

of the fractional type: 

  [ ] ( )tK,zK,zK,zt σεε
αα

α

EE
E 1

=+D            (57) 

Now, as in the previous consideration, apply the Laplace transform ℒ  and we get: 
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That is 
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That is 
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On the right side, we have the product of two functions, which can be viewed as the 
product of two Laplace transforms, two functions that are in convolution. Therefore, we 
need to determine the inverse Laplace transformations of each of these functions 
individually: 𝑬𝑬
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  ( ){ } ( )tt K,zK,z σσ =− LL 1                          (62) 
The solution is the convolution integral: 
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 which 𝜀𝜀𝑧𝑧,𝐾𝐾,𝑜𝑜 is the initial axial dilatation of the modified Kelvin-Voigt’s ideal model of an 
complex ideal body, fractional type. Then differentiating the previous expression for the 
axial dilatation (63) of Kelvin-Voigt’s model of an ideal complex material body and adding 
the velocity of axial dilatation 𝜀𝜀𝑧̇𝑧,𝑁𝑁 = 𝜎𝜎𝑧𝑧

𝑬𝑬𝛼𝛼
 of Newton's model of an ideal viscous fluid, 

fractional type,  to the velocity of axial dilatation of Lethersich's model of an ideal complex 
material, we get the following expression: [ ] [ ] [ ]N,ztK,ztL,zt εεε ααα DDD += . 

As can be seen from the structure of thegeneralized modified Lethersich model of an 
ideal complex material, fractional type, that it is formed by the serial connection of the 
modified fractional Kelvin-Voigt’s model of an ideal body,  and fractional Newton's model 
of an ideal viscous fluid, and as we have shown that the models of these ideal materials, of 
the fractional type, have properties, the first of which is elastic, and the second is the 
property of stress relaxation. This means that the modified fractional Lethersich model of 
an ideal material possesses both these properties and subsequent elasticity and normal 
stress relaxation, and that it is a more complex material model than its substructure. 
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4.4 Generalized modified fractional Jeffrey's model of ideal complex material. 

Generalized modified Jeffrey’s model of ideal material, fractional type, is with 
rheological structural formula in the form  𝑱𝑱𝛼𝛼 = 𝑵𝑵𝛼𝛼/(𝑯𝑯−𝑵𝑵𝛼𝛼), and with structure which 
is shown in the Fig. 11 (left). 

Classical Jeffreys' model of an ideal complex material, shown in the Fig. 9 (right), 
contains a parallel connection of Newton's element of an ideally viscous fluid and 
Maxwell's model of an ideally complex visco-elastic material, for which there are 
individual constitutive relations of normal stress and axial dilation, i.e. dilation rate, in the 
form: 
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  From here, by integration, it follows that (see Reference [1]): 
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Then, by adding 𝜎𝜎𝑧𝑧,𝑁𝑁1   and    𝜎𝜎𝑧𝑧,𝑀𝑀  , we get the resulting normal stress 𝜎𝜎𝑧𝑧,𝐽𝐽 in classical 
Jeffrey’s ideal complec material model and form: 
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and it is expressed through the rate of axial dilatation. 
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Figure 11. Generalized Jeffrey’s model of an ideal complex material, fractional type (left)   
and the classic Jeffrys’ model of an ideal complex material (right) 
 

The modified Jeffrey’s model of an ideal complex material, fractional type, shown in 
Fig. 11, contains a parallel connection of Newton's element of an ideally viscous fluid, 
fractional type, and a modified fractional Maxwell model of an ideally visco-elastic 
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complex material, for which there are individually constitutive relations of normal stress 
and axial dilation, i.e. rate of axial dilation, fractional type, in the form: 
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From the previous relation (69), we form an ordinary inhomogeneous fractional order 
differential equation of the form: 
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The solution of the previous (70) inhomogeneous differential equation of fractional 
order is solved using the Laplace transform ℒ, then by developing it in series, and returning 
it to the time domain with the inverse Laplace transform ℒ−1, from which it follows: 
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And  

  { } ( )[ ]{ }
1

1
2

2

+
=

αα

α
α εσ

p
t

,
M,zt,M,z

E
EE DLL                      (72) 

Analytical approximation of previous expression (72) is in the following form: 
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 Inverse Laplace transform expressed in the form:  
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gives an approximate analytical expression of the normal stress in function of axial 
dilatation of the Maxwell substructure model in the form (30) and by using integral of 
convolution in the form: 
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Because inverse Laplace transform gives expression in time domain: 
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 Then by adding 𝜎𝜎𝑧𝑧,𝑁𝑁1   and    𝜎𝜎𝑧𝑧,𝑀𝑀  , we get the resulting normal stress 𝜎𝜎𝑧𝑧,𝐽𝐽 in the modified  
Jeffrys model 𝑱𝑱𝛼𝛼 of an ideal complex  material, frakctional type, and in the  followung  
form: 
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And finally, aproximate analytical expression of mormal stress in function of the the 
fractional type velocity of axial dilation of a generalized-modigied complex Jeffrys’ model 
of an ideal complex material, fractional type. Obtained aproximate analitical expression – 
diferential, fractional order, relation (77) is constitutive relation, differential, fractional 
order, form. 

4.5 Generalized rheological modified Burgers' model of ideal complex material, 
fractional type. 

Generalized modified Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼 of ideal complex material, fractional type, it 
show it in the Figure 12 (left size), with rheological structural formule 𝑩𝑩𝑢𝑢,𝛼𝛼 = 𝑲𝑲−𝑴𝑴 or  
𝑩𝑩𝑢𝑢,𝛼𝛼 = (𝑯𝑯/𝑵𝑵𝛼𝛼) − (𝑯𝑯 −𝑵𝑵𝛼𝛼). 

The classic Burgers' model 𝑩𝑩𝑢𝑢,𝛼𝛼=1 of an ideal complex material, it show it in the Figure 
10 (right size), and it represents an ordinal-serially connection of Maxwell's and Kelvin-
Voigt's complex models of ideal materials. The constitutive relations (constituve 
equations) of this complex material model contain higher-order time derivatives. The total 
axial dilatation of the complex model of the classical Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼=1 of an ideal 
complex material is equal to the sum of the component dilatations 𝜀𝜀𝑧𝑧,𝑀𝑀 and 𝜀𝜀𝑧𝑧,𝐾𝐾, also 
complex models of Maxwell's and Kelvin-Voigt's basic complex models of ideal complex 
materials, while the normal stress in all points of cross sections of the component complex 
models is equal. Based on this analysis and derived conclusions, we can write the following 
relations: 
      K,zM,zBu,z εεε +=              (78) 

      K,zK,,,K,zKK,z εεσ α 211 =+= EE                            (79) 
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EE
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             (80) 

Let's differentiate the first constitutive relation from the previous system (78), and 
replace the terms from the third constitutive equation of the previous system, and based on 
that we could write the following constitutive relation for the classic Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼=1 
of an ideal complex material: 

  K,z
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Nor, we put the last constitutive equation (81) differentiated once more in time, so we 
get: 
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Let us now multiply the relation (80) by 𝑬𝑬𝐾𝐾 , and the last relation (82) by 𝑬𝑬𝛼𝛼=1,𝑀𝑀, and 
add them with K,zK,,K,zKK,z εεσ α  21=+= EE   and for the component Kelvin-Voigt  complex 
model of an ideal complex material, so that in the result we derive the following relation: 
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This last relationship between normal stress 𝜎𝜎𝑧𝑧,𝐵𝐵𝐵𝐵 and axial dilatation 𝜀𝜀𝑧𝑧,𝐵𝐵𝐵𝐵, i.e. the 
corresponding views, is the constitutive relationship of the ideal rheological material model 
of the structure of the classic Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼=1  of ideal complex material, which is 
shown in Fig. 10 (right size). Let us recall that it represents the serial relation of Maxwell's 
and Kelvin-Voigt's complex models of ideal basic complex materials. And under certain 
conditions, it has properties of subsequent elasticity and or relaxation of normal stress. 
Generalized rheological modified Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼 of ideal complex material, fractional 
type, with rheological structural fatmule 𝑩𝑩𝑢𝑢,𝛼𝛼 = 𝑲𝑲 −𝑴𝑴 or𝑩𝑩𝑢𝑢,𝛼𝛼 = (𝑯𝑯/𝑵𝑵𝛼𝛼) − (𝑯𝑯 −𝑵𝑵𝛼𝛼). 
A modified Burgers model  𝑩𝑩𝑢𝑢,𝛼𝛼of an ideal complex material, fractional type, is shown in 
Fig. 10 (left-hand size), and represents an serially connection of Maxwell's complex ideal 
material, fractional type, and Kelvin-Voigt's complex model of an ideal complex material, 
fractional type. The constitutive relations (equations of connections between normal stress 
and axial dilatation) of this complex material model, of the fractional type, contain 
derivatives of the fractional order in time, and also of the higher order. The total dilatation 
of the complex model of the rheological Burgers ideal complex material model, fractional 
type 𝑩𝑩𝑢𝑢,𝛼𝛼, is equal to the sum of the component dilatations 𝜀𝜀𝑧𝑧,𝑀𝑀 and 𝜀𝜀𝑧𝑧,𝐾𝐾    and the 
component, also, complex models of the Maxwell and Kelvin-Voigt complex models of 
ideal materials, fractional type, while the normal stress in all points of all cross- sections 
of the component complex model equal to 𝜎𝜎𝑧𝑧,𝐾𝐾1 = 𝜎𝜎𝑧𝑧,𝑀𝑀 = 𝜎𝜎𝑧𝑧,𝐵𝐵𝐵𝐵. Based on this analysis and 
derived conclusions, we can write the following relations: 
      K,zM,zBu,z εεε +=   
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Figure 12. Generalized Burgers’ model of an ideal complex material, fractional type 

(left)   and the classic Burgers’ model of an ideal complex material (right) 

      Let's differentiate the first constitutive relation, using the differential operator of 
fractional order  [ ]K,zt εαD   from the previous system (7), and replace the terms from the 
third constitutive equation of the previous system, and based on that we could write the 
following constitutive relation for the rheological modified Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼  of an ideal 
complex material, fractional type, in the form: 
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or 
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   [ ] Bu,zM,zK,ztK,,,K,zKK,z σσεεσ α
α ==+= D21 EE                      (89) 

 That is, as throughout the modified structure of the rheological Burgers model 𝑩𝑩𝑢𝑢,𝛼𝛼 of 
an ideal complex material, fractional type, the normal stress is equal to 𝜎𝜎𝑧𝑧,𝐾𝐾1 = 𝜎𝜎𝑧𝑧,𝑀𝑀 =
𝜎𝜎𝑧𝑧,𝑏𝑏𝑏𝑏, so the previous relations - equations of the fractional order can be written in the 
following form: 
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   [ ]K,ztK,,K,zKBu,z εεσ α
α D2EE +=          (91) 

 These last two relations between normal stress 𝜎𝜎𝑧𝑧,𝐵𝐵𝐵𝐵  and axial dilatation 𝜀𝜀𝑧𝑧,𝐵𝐵𝐵𝐵, i.e. the 
corresponding derivatives, fractional order, are coupled differential constitutive relations, 
fractional orders, model of ideal rheological material, modified structure of Burgers model 
𝑩𝑩𝑢𝑢,𝛼𝛼 of ideal modified Burgers model of ideal complex material, fractional order type, 
shown in Fig. 10 (left-hand size). That model of the modified rheological Burgers' model 



110   KATICA R. (STEVANOVIĆ) HEDRIH  
 

𝑩𝑩𝑢𝑢,𝛼𝛼 of ideal complex material, fractional type, and represents the serially connection of 
Maxwell's and Kelvin-Voigt's complex models of ideal materials, fractional type. And 
under certain conditions, it has properties of subsequent elasticity and or relaxation of 
normal stress. 

From this system of differential constitutive relations, of fractional order, we can 
eliminate the rate (velocity) of dilation of this type and obtain only one relation of the 
connection of normal stress and axial dilation of the modified structure, Burgers' model of 
an ideal material, fractional type 𝑩𝑩𝑢𝑢,𝛼𝛼, but by moving into the domain of the Laplace 
transform in the following form: 
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Now let's replace the last expression in (99) and get one equation: 
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Or in the form 
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 And now, by applying the inverse Laplace transform, it is possible to obtain the integral 
convoluting the time function of the normal stress 𝜎𝜎𝑧𝑧,𝐵𝐵𝐵𝐵 from the axial dilatation 𝜀𝜀𝑧𝑧,𝐵𝐵𝐵𝐵 of 
the structure of the Burgers model of an ideal material, fractional type 𝑩𝑩𝑢𝑢,𝛼𝛼. 

5. CONCLUDING REMARKS      

In chapters I, II and III of the paper, the author introduces two new rheological 
elements. One of the elements is a generalized Newtonian model of an ideal viscous fluid 
of the fractional type, characterized by a constitutive relation involving a fractional-order 
differential operator, where the order of differentiation lies within the interval (0, 1). The 
other ideal element is a Faraday-type element with piezoelectric properties, described by 
fractional-order differential constitutive relations. These relate the normal stress and axial 
dilatation to the electric voltage of the polarization field, or equivalently, to the dielectric 
displacement. This element represents a coupling between mechanical and electrical fields, 
involving tensors that describe the mechanical and electrical states of the piezoelectric 
material. 

It is shown that the generalized Newton element of an ideal viscous fluid, fractional 
type, has the ability to dissipate mechanical energy, fractional type. 

 Then the structures of new complex models of ideal materials, of the fractional type, 
are set up by replacing in the classic models of ideal materials, the classic Newton element 
of an ideal fluid, replacing it with a generalized Newton element of an ideal viscous fluid, 
of the fractional type. For each new generalized-modified model of a complex ideal 
material, of the fractional type, constitutive fractional differential relations are set. For the 
basic generalized-modified fractional Kelvin-Voigt and Maxwell models it is shown that 
the former exhibits the property of subsequent elasticity, while the latter demonstrates 
normal stress relaxation. 

Then, the next task is to define standard light complex models, of the fractional type, 
and study rheological dynamic systems, also of the fractional type, in which these standard 
light models act as connection elements in the rheological dynamic system.  
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It is assumed that there are rheological dynamic systems, of the fractional type, 
oscillator type or crawler type, depending on the properties of standard light rheological 
models, of the fractional type.  

In this paper, a new class of rheological models of ideal materials of the fractional type 
has been developed, based on the introduction of a generalized-modified Newtonian 
element of an ideal viscous fluid, characterized by a fractional-order differential operator. 
This element enables a more accurate modeling of energy dissipation phenomena in 
materials with memory effects. 

Two fundamental generalized-modified fractional models were constructed: 
• the Kelvin–Voigt model of the fractional type (𝐾𝐾𝛼𝛼  =  𝐻𝐻/𝑁𝑁𝛼𝛼), which exhibits 

the property of subsequent elasticity, and 
• the Maxwell model of the fractional type (𝑀𝑀𝛼𝛼  =  𝐻𝐻 − 𝑁𝑁𝛼𝛼), which 

demonstrates normal stress relaxation. 
For both models, analytical expressions were derived using Laplace transforms, and the 

resulting surfaces of axial dilatation and stress relaxation were presented as functions of 
time and the fractional differentiation exponent α ∈ (0, 1). These models serve as 
foundational elements for constructing more complex rheological systems. 

Furthermore, a series of generalized-modified fractional rheological models was 
proposed, including fractional versions of the Bingham, Lethersich, Jeffrey, and Burgers 
models. Each model is defined by a specific structural formula and corresponding 
fractional-order constitutive relations, offering a unified framework for describing the 
mechanical behavior of idealized materials with complex internal structure and memory. 

The results presented in this paper provide a theoretical basis for further development 
of fractional rheological dynamic systems, including oscillatory and creep-type systems 
with internal degrees of freedom. These models are particularly relevant for describing the 
behavior of advanced materials such as polymers, biomaterials, and piezoelectric 
composites under dynamic loading conditions. 
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