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Abstract. This numerical study analyzes the cooling of different geometry hot obstacles 
within a rectangular cavity filled with water-CuO nanofluid under a magnetic field. 
The analysis assumes a two-dimensional, stable, laminar, and compressible flow. The 
cavity features an inlet and outlet, with the cold nanofluid entering from the left side 
and exiting from the opposite side after cooling the hot obstacle. All cavity walls are 
insulated and the SIMPLER algorithm is used to solve the governing equations. 
Various parameters, including nanoparticle volume fraction, Reynolds number, and 
Hartmann number, are examined. The results reveal that as the Reynolds number 
increases, the isothermal lines become more concentrated, and the cold zone near the 
inlet expands. This effect causes the isothermal lines to move closer to the hot obstacle, 
resulting in a steeper temperature gradient and enhanced heat transfer from the hot 
barrier. 
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1. INTRODUCTION 

Conventional fluids typically have low thermal conductivity, which limits their heat 
transfer capabilities in industrial applications. To overcome this limitation and enhance 
heat transfer, nanofluids – dilute suspensions of nanoparticles in liquids, offer a promising 
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solution. Numerous studies have focused on developing empirical models for nanofluids, 
with the aim of applying these models to practical scenarios in nature and industry. 
Furthermore, the integration of nanofluids in cooling systems has emerged as a recent and 
highly active area of research, drawing significant attention from researchers [1-5]. Wang 
et al. [6] conducted a numerical study on the fluid flow and heat transfer of water-copper 
oxide nanofluid within a square cavity. The horizontal walls were insulated, while the left 
and right walls were maintained at hot and cold temperatures, respectively. Their findings 
indicated that when the effects of Brownian motion were considered, the average Nusselt 
number increased as the volume fraction of nanoparticles grew. Haddad et al. [7] also 
performed a numerical analysis to examine the impact of Brownian motion on natural 
convection heat transfer. They studied a water-copper oxide nanofluid in a chamber with 
cold upper and hot lower walls. Their results showed that heat transfer increased across 
all volume fractions, with the most significant enhancement occurring at lower volume 
fractions. Sharma et al. [8] investigated the forced convection heat transfer of a water-
alumina nanofluid at low volume fractions in a heated channel. They found that the 
average Nusselt number increased with the nanoparticle volume fraction but decreased as 
the aspect ratio (defined as the width-to-height ratio) increased. Aghaei et al. [9] studied 
the velocity field and temperature distribution in a trapezoidal enclosure using the finite 
volume method. The working fluid was water with copper nanoparticles, leading to the 
consideration of a magnetic field within the enclosure. Their results showed that the 
nanoparticle volume fraction had a direct impact on increasing both the Nusselt number 
and entropy generation, whereas the Hartmann number exhibited the opposite effect. In a 
separate numerical study, Abbaszadeh et al. [10] employed the KKL model for a CuO-
water nanofluid to account for the effects of Brownian motion of nanoparticles. They used 
the SIMPLER algorithm and the finite volume method to solve the Navier-Stokes 
equations (for flow field analysis) and the energy equation (for temperature distribution). 
In their study, Abbaszadeh et al. [10] considered a parallel plate microchannel geometry 
and applied the slip boundary condition on the walls. They incorporated the effects of the 
magnetic field through the Hartmann number. Their results indicated that increasing the 
fluid's inertia force, nanoparticle density, and the magnetic field effect led to higher total 
entropy production and an increase in the average Nusselt number. In a separate 
investigation, Ababaei et al. [11] utilized the finite volume method (FVM) to optimize the 
placement of obstacles within a microchannel to enhance the heat transfer rate. They 
worked with an Al2O3-water nanofluid, with the fluid properties modeled using the 
variable properties model proposed by Khanafer and Vafaei [12]. Their findings 
reinforced that increasing the momentum of the nanofluid boosts heat transfer inside the 
microchannel. They suggested that maintaining a sufficiently high Reynolds number is 
advantageous for augmenting the Nusselt number, although it also leads to an increase in 
total entropy generation. Recently, Hashim et al. [13] investigated the enhancement of 
heat transfer in an Al2O3-water nanofluid inside a wavy cavity using the finite element 
method. They applied partial heating to the bottom wall, while the wavy walls were kept 
isothermal, and the top wall was insulated. Different oscillation types for the wavy walls 
were tested to determine the optimal configuration for maximizing the Nusselt number. 
Their results demonstrated that the presence of nanoparticles enhanced the heat transfer 
rate within the cavity. A review of the existing literature reveals that the cooling of a hot, 
square-shaped obstacle within an enclosure has not been extensively studied. This study is 
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motivated by the need to quantitatively analyze the combined effects of magnetic fields, 
nanoparticle-enhanced fluids, and complex obstacle geometries on the enhancement and 
control of natural convection heat transfer within enclosures, addressing gaps in 
optimizing thermal performance in advanced cooling systems. Therefore, the primary 
objective of the present study is to numerically investigate the cooling of a hot barrier 
while considering the effects of the magnetic field within the enclosure. The walls of the 
enclosure are insulated, and the study examines the impact of fluid inertia, magnetic field 
strength, nanoparticle volume fraction, and outlet location on heat transfer. This analysis 
is conducted for Reynolds numbers ranging from 1 to 100, Hartmann numbers from 0 to 
40, and nanoparticle volume fractions from 0% to 4%. 

2. RESEARCH METHODOLOGY 

The geometry of the enclosure is illustrated in Fig. 1. The cold nanofluid enters from 
the left side, flows through the cavity, and exits from the opposite side after cooling the 
hot obstacle. All walls of the enclosure are insulated, and the ratio of the length to width 
of the enclosure is 2. An aspect ratio of 2 is commonly used in studies related to natural 
convection in enclosures due to its ability to capture essential flow features, such as the 
development of secondary vortices, while maintaining a manageable computational 
domain. Several prior investigations have employed similar geometries in the context of 
nanofluid and MHD convection simulations [14,15].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Geometry and boundary conditions (dimensionless) 
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This choice provides a balance between physical representativeness and numerical 
stability. Additionally, the rectangular enclosure with this aspect ratio allows for a clear 
observation of boundary layer development along vertical and horizontal walls, which is 
crucial when evaluating heat transfer characteristics such as the Nusselt number. The hot 
obstacle has four different geometries, but all of them have the same cross-sectional area. 
The working nanofluid is an MHD CuO-water nanofluid, with its properties listed in 
Table 1. 

Table 1 Thermo-physical properties of water as base fluid and CuO nanoparticles [16]  

 ρ 
(kg/m3) 

cp 
(J/kgK) 

k 
(W/mK) 

dup 
(nm) 

σ  
(Ωm)-1 

pure water 997.1 4179 0.613 -- 0.05 

CuO 6500 540 18 29 10-10 

 The governing equations for laminar, natural convection flow of the nanofluid, 
including the Navier-Stokes equations and energy equation, are given as follows: 
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In these equations, 𝑢𝑢 and 𝑣𝑣 represent the horizontal and vertical components of 
velocity, respectively, p is the pressure, T is the temperature, 𝜌𝜌nf is the nanofluid density, 
𝜈𝜈nf=μnf/ρnf is the kinematic viscosity of the nanofluid, 𝛼𝛼nf=κnf/(ρcp)nf is the thermal 
diffusion coefficient of the nanofluid, and cp is the heat capacity of the nanofluid at 
constant pressure. The dimensionless parameters used to cast the aforementioned 
equations into the non-dimensional form are as follows [17]: 
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where h cT T T∆ = − .  
The continuity equation for the nanofluid flow expresses the conservation of mass and 

is generally the same as for conventional fluids, assuming the nanofluid behaves as a 
single-phase incompressible fluid. It ensures that the mass entering any control volume 
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equals the mass leaving it, implying no accumulation of mass. The continuity equation for 
2D flow is expressed as below: 
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The Reynolds, Hartmann, and Prandtl numbers are respectively defined as follows: 
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The properties of the nanofluid including density, heat capacity, volume expansion 
coefficient, diffusion coefficient are obtained as follows [18]: 

 ( )1nf f s= − +ρ ϕ ρ ϕρ  (11) 

 ( ) ( )( ) ( )1p p pnf f s
c c c= − +ρ ϕ ρ ϕ ρ  (12) 

 ( ) ( )( ) ( )1nf f s= − +ρβ ϕ ρβ ϕ ρβ  (13) 

 ( )nf nf p nf
k c=α ρ  (14) 

In the Maxwell-Brinkman model, the viscosity [13] and thermal conductivity 
coefficient [16], which depend solely on the volume fraction of nanoparticles, are 
determined using equations (15, 16). 

 ( ) 2.51nf f
−= −µ µ ϕ  (15) 

 ( )( ) ( )( )= + − − + + −nf f p f f p p f f pk k k 2k 2 k k k 2k k kφ φ  (16) 

For the water-copper oxide nanofluid, the λ  and ζ  corresponding functions are 
experimentally determined for the temperature range 300<T(K)<325 [3]: 
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The local Nusselt number is given by the following expression [19]: 

 ( )
( )nf w

q x .L
Nu

k . T T∞

′′
=

−
 (18) 

Where ( )q x′′  is the local heat flux at the surface, L is the characteristic length, nfk is the 

thermal conductivity of the nanofluid,  is the wall temperature and  is the ambient 
fluid temperature. The average Nusselt number can be calculated by inte 
 

grating Eq. (18) along the surface of the hot obstacle:   
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The Maxwell model equation estimates the effective electrical conductivity of the 
nanofluid by treating it as a two-phase mixture of the base fluid and dispersed 
nanoparticles. It accounts for the conductivities of both components and the volume 
fraction of nanoparticles suspended in the fluid. The model helps predict how adding 
conductive nanoparticles alters the overall electrical behavior of the fluid, which is 
important for applications involving electromagnetic fields or heat transfer. 

 
( )
( )

+ − −
=

+ + −

p f f p
nf f

p f f p

2 2

2

σ σ φ σ σ
σ σ

σ σ φ σ σ
 (20) 

where nfσ , fσ , pσ  and φ are the electrical conductivity of the nanofluid, the 
electrical conductivity of the base fluid, the electrical conductivity of the nanoparticles, 
and the volume fraction of the nanoparticles, respectively. The numerical method 
employed in this study is the SIMPLER algorithm combined with the Finite Volume 
Method (FVM). In this approach, a fine grid is initially defined over the problem domain, 
and a volume is assigned to each node. After integrating and discretizing the governing 
equations, the partial differential equations (PDEs) are simplified. The discretized 
equations are then solved using a line-by-line TDMA solver. To ensure the results are 
independent of the grid, the parameters of the average Nusselt number for grids with 
different dimensions are compared until changes in the grid dimensions no longer 
significantly affect these parameters (as shown in Table 2). Several simplifying 
assumptions are made in numerical modeling. These assumptions could contribute to 
slight discrepancies between simulated results and experimental data. It is important to 
note that such deviations are common in numerical simulations, especially when 
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simulating complex phenomena such as MHD nanofluid convection. While a 13.46% 
deviation is relatively large, it is within the typical range of variability found in similar 
studies involving nanofluids and MHD effects, as noted in previous works [14]. Also, the 
assumption of ideal dispersion for numerical modeling purposes means that the 
nanoparticles remain uniformly dispersed throughout the fluid without significant settling 
or clustering during the time scale of the heat transfer process. This assumption is 
commonly adopted in MHD nanofluid convection simulations [20]. 

Table 2 Average Nusselt number in Ha=40, Re=10 and φ=0.03  

Grid size Nuav Relative difference 
41×21 19.14 -- 
81×41 16.10 13.46 
161×81 16.38 1.74 

 
 
 
 3. RESULTS AND DISCUSSIONS 

To validate the computer program used in this study, the results from Mahmoudi and 
Mazrouei [21] are modeled using the current numerical program, and their outcomes are 
compared and evaluated. The geometry of the setup used by Mahmoudi and Mazrouei 
[21] is shown in Fig. 2. 

 
 
 
 
 
                         
 

Fig. 2 The geometry of the Mahmoudi and Mazrouei [21] 

In their study, they examined the problem of natural convection heat transfer of a 
copper-water nanofluid inside a square enclosure with a square insulating barrier placed 
at the center of the enclosure. As shown in Table 3, there is a good agreement between the 
results of the present study and the numerical results obtained by Mahmoudi and 
Mazrouei. 

Fig. 3 demonstrates how the isothermal lines vary due to the presence of different 
obstacles at the Reynolds and Hartmann numbers of 100 and 40, respectively. Initially, 
the flow near the cold inlet interacts with the hot obstacle, gradually warming up the fluid. 
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As a result, the isothermal lines spread across the chamber, and a slight temperature 
gradient appears on the hot obstacle. When the Reynolds number increases, the isothermal 
lines become more compressed, causing the cold region near the inlet to expand. 

Table 3 Comparison of average Nusselt number values on warm wall with Mahmoudi and 
Mazrouei research [21] 

nanoparticle volume fraction 
average Nusselt number values 

difference percentage  
Mahmoudi and Mazrouei  Current study 

φ=0.0  9.6762 9.7918 1.2 
φ=0.05  10.2635 10.4046 1.3 
φ=0.10  10.8658 10.9789 1.0 

This is due to the increased strength of the flow with the rising Reynolds number, 
which pushes the isothermal lines closer to the hot obstacle, resulting in a steeper 
temperature gradient and enhanced heat transfer from the hot obstacle. This effect is 
particularly noticeable with the diamond-shaped obstacle, where most of the chamber is 
filled with cold fluid, leading to more intense heat transfer on the hot obstacle. In contrast, 
for the square and triangular obstacles, the isothermal line pattern remains largely 
unchanged, with only minor adjustments attributed to the alterations in the flow pattern 
discussed earlier. Additionally, the temperature gradient on the hot obstacle is lower for 
the nanofluid compared to the base fluid, due to the thicker thermal boundary layer of the 
nanofluid, which arises from its higher thermal diffusivity.                                                                                       
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Fig. 3 Changes in streamlines with different obstacles for nanofluids at Reynolds and 
Hartmann numbers of 100 and 40 

Fig. 4 illustrates the variation of the dimensionless temperature along the vertical axis 
at the central section of the enclosure for different Reynolds numbers, with Ha=20 and 
ϕ=4%. At Re=10, inertial forces are weak relative to viscous forces, resulting in 
asymmetric circulation where the right vortex dominates and the left one is weak. As the 
Reynolds number increases, inertia dominates, causing a reversal of vortex strength: the 
left circulation becomes larger and stronger while the right weakens. This leads to deeper 
hot-region penetration into the cavity core, enhanced nanoparticle mixing toward the 
walls, and overall increased convective heat transfer. Such behavior is consistently 
observed in MHD-driven nanofluid convection studies in rectangular enclosures, where 
increasing Re significantly enhances flow symmetry and heat transfer efficiency. When 
the Reynolds number increases from 1 to 100, the variation of the temperature remains 
largely unchanged due to the dominant influence of the magnetic forces (Ha=20). 
However, at Re=100, noticeable changes begin to appear, indicating a partial weakening 
of the magnetic suppression. 
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Fig. 4 Variations of the U component velocity with respect to the vertical location in the 
central section of the enclosure at different Reynolds numbers (Ha=20 and ϕ=4%): (a) 
rectangular obstacle, (b) circular obstacle, (c) triangular obstacle, (d) diamond obstacle 

Fig. 5 presents the temperature distribution contours of the CuO nanofluid within a 
rectangular enclosure containing various obstacle shapes. In the absence of external 
forces, natural convection is driven solely by buoyancy effects resulting from temperature 
differences, which generate free convection currents that strongly impact the temperature 
field. The figure demonstrates that a circular obstacle induces symmetrical flow 
separation, allowing temperature contours to smoothly diverge around its surface. In 
contrast, a square obstacle introduces sharp edges that lead to flow detachment and the 
formation of recirculation zones, with thermal boundary layers developing along its flat 
faces. For the triangular obstacle, concentrated thermal regions are observed near the 
corners due to localized flow disruptions and sharper temperature gradients.                      
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Fig. 5 Temperature distribution contours for different obstacles with CuO nanofluid at 
Re=100, Ha=20 and ϕ=4% 

4. CONLUSIONS 

This study comprehensively examined the heat transfer characteristics of an MHD 
CuO-water nanofluid flowing through an enclosure containing hot obstacles in the middle 
of a rectangular cavity with varying geometries but equal cross-sectional areas. Utilizing 
the SIMPLER algorithm coupled with the Finite Volume Method ensured accurate 
numerical modeling validated against previous work, confirming the reliability of the 
results. The cavity had an inlet and an outlet, walls were insulated, the barrier in the 
middle of the cavity was warm, and the effects of fluid inertia, magnetic field strength, 
volume fraction of nanoparticles on the heat transfer rate were investigated. The 
simulation was performed for Re=1- 100, Ha=20, and ϕ=4%. The results showed that: 
1- The diamond-shaped obstacle notably enhanced heat transfer by promoting a wider 

cold fluid region near the inlet and intensifying temperature gradients on the obstacle 
surface. 

2- The magnetic field and Reynolds number interplay demonstrated that stronger flows 
could partially counteract magnetic suppression effects, altering velocity profiles and 
thermal boundary layers. 

3- The nanofluid’s higher thermal diffusivity resulted in thicker thermal boundary layers 
and consequently lower temperature gradients on the heated surfaces compared to the 
base fluid. 

4- These findings underscored the critical role of obstacle geometry and flow 
parameters in optimizing heat transfer in MHD nanofluid systems, providing valuable 
insights for designing efficient thermal management devices. 
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