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Abstract. This paper takes initial steps in proposing non-intrusive, data-driven 
methodology for detecting consumer behavior patterns in District Heating Systems 
(DHS), focusing specifically on occupant presence and window opening events. 
Recognizing the limitations of legacy supply-driven control logic in DHS, paper aims to 
show the feasibility of a novel detection approach without ground truth data, utilizing 
environmental sensor data collected from residential apartments, including CO₂ 
concentration, indoor temperature, relative humidity, and outdoor temperature. 
Occupancy detection is performed by using analysis of CO₂ concentration signal. For 
window opening detection, a robust multivariate outlier detection based on the 
Mahalanobis distance computed over first-order differences in sensor signals was 
applied. Events are inferred by identifying anomalous combinations of rapid CO₂, 
temperature, and humidity changes during periods of thermal imbalance between 
indoor and outdoor environments. The results show consistent and interpretable 
behavioral patterns that demonstrate the feasibility of detecting consumer behavior 
using passive sensor data. This enables the integration of behavior-aware control 
strategies in DHS operations, with the potential to improve thermal comfort, reduce 
energy waste, and lower emissions. 
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1. INTRODUCTION 

A District Heating System (DHS) is an infrastructure which facilitates supply of 
thermal energy to multiple buildings, normally comprised of a heating plant - a central 
heat generation source and a set of substations, used for transfer and regulation of heat 
supply to one or more buildings in the area. 

Great majority of the legacy DHS operate by using supply-driven control logic, where 
this logic is implemented in a semi-automatic manner. The delivery of heat at the level of 
substations is automatic, and it is driven by using so-called control curve, which 
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describes the targeted dependency of the heating fluid temperature in primary and 
secondary supply circuits (from plant to substations and substations to consumers, 
respectively) and ambient temperature. However, set points of the control curve are 
defined manually by the plant operators, who consider fixed heating schedules and 
weather-based predictions. 

Obviously, this approach to operating DHSs is inefficient. First, it does not involve 
demand-side awareness, including comfort level of apartments, occupancy and other 
behavioral patterns which may reflect or impact the actual heat demand. The lack of 
information from the demand side easily leads to over-heating, for example, during sunny 
or unoccupied hours or under-heating, for example, when actual demand spikes 
unexpectedly. Secondly, consumer behavior is not considered by the control logic. DHS 
has no awareness whether occupants are home, whether some rooms in the apartments 
are actually used or, for example, whether windows are open. Thus, great losses are 
expected in situations such as night hours in unoccupied rooms, ventilation periods 
(windows open) and long-term vacancies (travel, holidays). Thirdly, many apartments in 
legacy DHSs do not have zonal thermostats which are used by the consumers to regulate 
the thermal comfort levels themselves. 

Understanding consumer behavior is essential for optimizing operation of the DHS. 
Some of the behavioral patterns that could help to significantly improve the efficiency of 
the DHS are occupancy detection (including weekend vs. weekday patterns, extended 
absences, e.g. travels), ventilation periods detection (window opening), detecting 
thermostat adjustment, detecting peaks in hot water consumption and detecting use of 
blinds and curtains for daylight and solar heat gain management, wake-up and sleep 
schedule detection. Detecting the abovementioned and other consumer behavior patterns 
would improve demand forecasting accuracy and thus achieve better energy efficiency 
but also much higher service quality, due to reduced over- and under-heating effects. 
Improved efficiency will decrease fuel consumption and CO₂ emissions of the DHS. 

This paper proposes approaches for detecting occupancy and window opening events, 
respectively. The paper builds on existing results in heat demand forecasting [1] with aim 
to extend the forecasting approach by considering consumer behavior patterns greatly 
affecting the demand-side. It uses data collected from the local DHS, specifically 
SCADA data [2], weather data and indoor temperature, relative humidity and CO₂ 
concentration data. The dataset does not include ground truth labels on occupancy and 
window opening events. The absence of ground truth data disqualifies supervised 
Machine Learning methods as feasible for addressing those problems. Thus, unsupervised 
ML and advanced statistical analysis approaches will be tested. The experiments are 
using some of the findings on the effective use of the multivariate outlier detection 
methods on SCADA dataset [3]. 

The hypothesis is as follows: 
H1. Unsupervised ML and advanced statistical modeling, combined with the best 

feature engineering practices can be applied to effectively detect consumer behavior in 
the District Heating System. 

H1.1 There exists a feasible approach to detect occupancy, based on CO₂ 
concentration in the apartments and other time-related features. 

H1.2 There exists a feasible approach to detect window opening events, based on CO₂ 
concentration, indoor temperature and humidity in the apartments and outdoor 
temperature. 
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This paper is structured as follows. The Background research section highlights the 
most cited papers addressing the problems of consumer behavior in district heating with 
specific focus to data-driven methods for detecting occupancy and window opening 
events. The synthesis of the literature review, while taking into account the restrictions 
imposed by the scope of the available dataset, is then used to infer the key guidelines for 
designing the methodology to address the abovementioned problems. Those guidelines 
and detailed methodology are described in the Methodology section. Then, section 
Implementation presents detailed implementation of the selected methods and discussion 
on its results. Finally, Conclusion section highlights key aspects of this paper, 
summarizes the experiences and points out to the future research directions. 

  2. BACKGROUND RESEARCH 

Two key aspects of DHS consumer behavior considered in this paper are the occupant 
presence (occupancy) and window opening habits. These factors directly influence heat 
demand and energy efficiency. For instance, heating an empty apartment or heating with 
windows open leads to significant energy waste. Studies have shown that ignoring real 
occupancy can cause 30–50% energy waste in buildings due to heating/cooling of unused 
spaces [4]. Likewise, occupants' window-opening actions can substantially affect indoor 
climate and heat loss, with inappropriate window use increasing heating energy 
consumption and reducing comfort [5]. 

2.1 Occupancy detection 

Occupancy or presence detection refers to determining whether (and sometimes how 
many) people are occupying a space, and possibly their activity level. In the context of 
heating, presence information allows the system to supply heat only when and where 
needed. In general, heating only when and where occupants are present yields 
considerable energy savings in residential buildings. Ericson et al [6] showed that using 
real-time occupancy sensor data for HVAC control could save about 42% of energy 
compared to fixed schedules in an office scenario. Taylor [7] found over 10% of savings 
in a large portfolio of 280 commercial buildings when occupancy-based strategies were 
applied. In the residential context, [8] evaluated occupancy-driven thermostats via 
simulation: they found 11–34% heating energy savings in a typical U.S. home by 
switching from always-on or schedule-based heating to occupancy-responsive heating, 
without compromising comfort. Another study reported that optimizing HVAC control 
based on predicted occupancy (using ML models) can reduce HVAC energy use by about 
23% on average [9]. These numbers underscore that occupancy-aware control is one of 
the most effective energy-saving measures for space heating. 

A variety of approaches for presence detection have been developed, mostly classified 
in two groups: sensor-based occupancy detection and data-driven and Machine Learning 
(ML) approaches. 

Early methods rely on physical sensors to detect motion or other traces of human 
presence. Passive infrared (PIR) motion sensors are widely used, including in 'smart' 
thermostats and standalone occupancy sensors, to detect movement as a proxy for 
presence [10]. PIR sensors are simple and low-cost, but they only indicate motion; a 
motionless but present person might be missed, and false triggers can occur. Thus, some 
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systems augment PIR with ultrasonic motion detectors or acoustic sensors to improve 
reliability [11]. Another common sensing approach uses environmental signals like CO₂ 
concentration, temperature, or humidity. Humans breathe out CO₂, so indoor CO₂ levels 
rise in occupied, unventilated rooms. CO₂ sensors have thus been used to infer occupancy 
count or density. In fact, a broad literature review by Dai et al. [9] found that indoor CO₂ 
concentration is one of the most important predictor variables for models that estimate 
occupant count or level. For presence (as opposed to precise count), a threshold CO₂ level 
or rate-of-rise can signal that someone is present. Temperature and humidity changes 
caused by human presence (through body heat and perspiration) have also been explored, 
often in combination with other sensors [11]. However, using single environmental 
sensors in isolation can be problematic: e.g. a heater or sunshine can raise temperature 
without occupancy, and CO₂ buildup depends on ventilation. Thus, sensor fusion is 
common - combining motion sensors, CO₂, temperature, sound, etc., can yield a more 
robust occupancy detection system [12]. In recent years, some researchers have also 
experimented with vision-based detection (cameras with computer vision). For example, 
Tien et al. [13] deployed a camera with a deep learning model (based on R-CNN) to 
detect the presence of occupants and even recognize their activities in real-time. While 
this achieved high accuracy (over 85% for activity recognition and 92% for detecting if a 
person is present), cameras raise privacy concerns in homes. Due to privacy and 
intrusiveness, vision or audio-based methods are more feasible in offices or labs; in 
private apartments their use is limited. In fact, researchers note that many sensing 
methods cannot be practically deployed in homes for privacy or installation reasons [14]. 
This has steered residential occupancy detection toward non-intrusive approaches using 
existing infrastructure (like thermostats, smart meters, or network data) rather than 
dedicated cameras or extensive sensor networks. 

Beyond hardware sensors, a significant research effort has been invested to infer 
occupancy from various data streams using machine learning (ML) and statistical models. 
These approaches are data-driven, turning sensor readings (or other indirect indicators) 
into occupancy estimates, often by recognizing patterns associated with human presence. 
One approach is to leverage smart electricity meters and appliance usage as occupancy 
proxies. Becker and Kleiminger [15] developed a occupancy detection algorithm that 
uses only the household's electricity consumption time-series. By smoothing and 
thresholding changes in power draw, their method can infer when occupants are home or 
away without any prior training specific to that household. In a field test, this non-
intrusive method detected occupancy with 94.6% accuracy compared to ground truth in a 
residential setting. Researchers have also applied classical ML models and time-series 
models to occupancy detection. For instance, one study combined temperature sensor 
data and PIR motion data to train Markov models, Hidden Markov Models (HMM), and 
even recurrent neural networks (RNN) to detect occupancy patterns [11]. The HMM and 
RNN approaches can capture the temporal dependence (e.g., that occupancy at a certain 
time makes continued occupancy more or less likely) and have shown improved accuracy 
over static classifiers in some cases. More recently, researchers have explored deep 
learning (e.g., long short-term memory networks) to automatically learn features from 
multi-sensor time-series and predict occupancy status or counts [11]. While these can 
improve accuracy, they require larger datasets for training and may be 'black boxes' 
compared to simpler models. A very important aspect of data-driven methods is the 
feature engineering – creating input features that strongly correlate with occupancy. As 
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noted, CO₂ is a valuable feature for occupancy estimation. Additional useful features 
include CO₂ derivatives (rate of change), smart meter power spikes (indicating device 
usage), or composite features combining time-of-day with sensor readings. In occupancy 
detection competitions, combinations of motion sensor triggers, door openings, light 
switch events, and environmental readings often yield the best results, indicating that no 
single sensor dominates. Crucially, occupancy detection models must balance accuracy 
with practicality. Simpler models like logistic regression or decision trees can be 
sufficient to detect presence/absence and are easier to deploy; complex ML models might 
be overfit to a particular dataset or be hard to generalize. Thus, comparing different ML 
models on multiple criteria (accuracy, false-alarm rate, generalizability, etc.) is advised to 
find the most suitable one. 

2.2 Window opening detection in apartments 

Occupants commonly open windows for ventilation, fresh air, or thermal comfort 
reasons (especially if they are over-heated). In centrally heated apartments, an open 
window can act as a cooling mechanism, but it also simultaneously lets out heat that the 
heating system supplied, reducing efficiency. Detecting and responding to window 
opening events is therefore another crucial aspect of optimizing the heating. Researchers 
approach window opening detection through direct sensing, indirect inference using 
environmental data, and advanced data-driven models, similar to occupancy detection. 

Tien et al. [13] highlight that unintended open windows 'lead to substantial heat loss 
and consequently raise energy consumption' in buildings. A field survey by Rijal et al. 
[16] demonstrated measurable impacts of window opening on heating energy use and 
comfort, prompting efforts to include window behaviors in building simulations. From a 
district heating viewpoint, if many residents open windows in winter because their units 
are too warm (a common scenario in older systems without individual control), the 
network ends up supplying heat that is immediately dissipated outside. This not only 
wastes fuel but can also lead to imbalance in the system (return water temperatures rise, 
etc.). Therefore, detecting window opening is valuable for either automatically reducing 
the heat supply or for informing the plant operator or consumer to take corrective action. 

The most straightforward way to detect a window opening is a contact sensor on the 
window itself. These are magnetic reed sensors or similar (often used in security systems) 
that register when a window or door is open. Many building automation and smart home 
systems deploy such sensors on windows; they can directly signal the heating controller 
to turn off or lower output when a window is open. On the other hand, some smart 
radiator valves advertise 'open window detection' which, if enabled, will shut off the 
radiator when the valve's temperature sensor senses a sudden drop (as a proxy for an open 
window). This is essentially a rule-based approach using a temperature threshold or drop 
rate – a form of detection that doesn't explicitly know the window's state but infers it 
from consequences. Researchers have formalized such rule-based methods. Hoyet et al. 
[17] describe a simple algorithm to detect night-time window ventilation events by 
looking for a decrease in indoor temperature at night followed later by an increase 
(signaling closing). Applied to a case-study apartment (with ground-truth from actual 
window sensors), their method could estimate the duration of nightly window openings 
within about 15% of the true value. The approach demonstrates that even without a 
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window sensor, one can deduce an open window from the indoor climate response if the 
signal is clear enough. 

Much like occupancy, window opening behavior has been studied using statistical and 
ML models – often by correlating window state with environmental and contextual 
variables. ML classification models have been widely used to predict the probability of a 
window being open under certain conditions. These models typically take inputs like 
indoor temperature, outdoor temperature, indoor CO₂, time of day, etc., and output a 
probability of an occupant choosing to open the window. When parametric algorithms are 
used, such methods have the advantage of providing interpretable coefficients. For 
example, one study's logistic model revealed that indoor CO₂ level was the most 
important variable explaining the opening of windows, while outdoor temperature was 
the main driver for deciding to close the windows [17]. The same study found that 
dwelling characteristics (like floor area and insulation level) also influenced window-
opening propensity (larger or better-insulated dwellings had different habits).  

With the recent expansion of Machine learning (ML) and AI approaches, the 
researchers have attempted everything from Decision Trees and Random Forests to 
Support Vector Machines and neural networks for classifying window opening events. A 
recent paper by de Rautlin de la Roy et al. [18] provides a comprehensive comparison: 
they tested 15 different ML models – including linear discriminant analysis, SVM, 
Random Forest, and Deep Learning models like LSTM (long short-term memory) and 
GRU (gated recurrent unit) – for detecting window-openings during the heating season. 
Their study leveraged rich data (indoor/outdoor temperature, humidity, CO₂, and 
electricity use) and focused on how feature engineering can improve detection. They 
found that creating features representing the difference between indoor and outdoor 
conditions (e.g., temperature differential) and temporal features (like exponential moving 
averages of signals) significantly boosted model performance. In particular, 
transformations that highlight the impact of a window (such as the drop in indoor 
temperature relative to outside when a window opens) helped models distinguish 
window-opening events more accurately. Interestingly, their results also echoed what 
other researchers have noted: CO₂ concentration is a very informative feature for window 
events. Markovic et al [19] used a deep neural network to model window openings, and 
by analyzing the trained network's weights they found that indoor environmental 
variables - especially CO₂- were dominant influences in the model's decisions. Intuitively, 
high CO₂ or poor air quality often prompts occupants to open windows for ventilation. 
Another input of high importance is wind speed, as very windy or calm conditions affect 
the tendency to open windows (wind can cause drafts or noise). Recent models therefore 
often include weather data (temperature, wind, even outdoor air quality/pollution levels) 
to predict window operation. Nguyen et al. [20], for example, used a suite of ML 
algorithms to predict the opening state of a group of windows in an open-plan office, 
using inputs like indoor/outdoor climate and achieved good accuracy (they compared 
methods like random forest, KNN, etc.). More novel techniques have also been explored: 
researchers in one study used an audio sensor and trained an LSTM-CNN model to detect 
the sound signature of a window opening event [21]. The system converted audio signals 
into spectrogram images and classified them; reportedly distinguishing window 
movement sounds from other noises. 
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3. METHODOLOGY 

The research presented in this paper aims at addressing occupancy and window 
opening event detection problems on the existing dataset, including local DHS SCADA 
data, meteorological station data and data collected from the apartments. Dataset does not 
include ground truth data, specifically timestamps of the abovementioned events. To 
design the methodology, this paper takes into account the conclusions gained from the 
literature review, as follows. 

Availability of different data collected by different indoor and outdoor sensors makes 
it possible to meet the requirement of using sensor fusion, or sensor networks in detecting 
consumer behavior. As highlighted in the literature review, a particularly important role 
is given to indoor CO₂ concentration, which is considered combined with outdoor and 
indoor temperature and humidity. While the methodology implements a data-driven 
approach, with absence of ground truth data, it will rely mostly on advanced statistical 
analysis of the available signals. In general, using unsupervised approaches also 
contributes to the generality and transferability of the models. The methodology will not 
use rule-based approaches and thresholds, but signal analysis, while focusing on 
derivative features, as suggested from the literature. Even though the initial experiments 
will be done on a single apartment, use of derivative features implies transferability of the 
approach, which will be tested in the future research. The proposed methodology is 
minimally intrusive; it does not imply the use of cameras and other sensors which may 
have privacy implications. In fact, lack of ground truth data even removes pseudo-
anonymity from the picture. Data collection infrastructure is not only minimally 
intrusive, but also exceptionally easy to install and maintain, with cloud-based data 
collection. 

In this research, we work with small District Heating System managed by the Faculty 
of Mechanical Engineering (FMEDH). FMEDH has 12 consumers (and respective 
heating substations) of different demands, namely secondary education, higher-education 
and research organizations, student dormitory, restaurant and a residential block and total 
heated area of nearly 120.000m2. Natural gas is used as primary fuel. 

The dataset include the features from 4 different groups: control data coming from the 
sensors installed in the substation and stored by SCADA system, weather (forecasted) 
data acquired from the Visual Crossing Weather Data and Weather API source, weather 
data acquired from the local meteorological station (this data will not be used in this 
experiment due to its sparsity) and data measured in the specific apartment, namely: 
temperature, relative humidity and CO₂ concentration. 

For occupancy detection, a simple statistical method for finding local extrema is used. 
Local extrema in the CO₂ time series is classified as a local minimum (valley) if its value 
was lower than those of its preceding and succeeding three neighbors, and as a local 
maximum (peak) if it was greater than those of its surrounding values over the same 
window. 

For detecting window opening events, multivariate outlier detection on the selected 
signals (first-order differences of indoor temperature, humidity and CO₂ concentration) is 
used, specifically Mahalanobis distance method [22]. The Mahalanobis distance is a well-
established multivariate metric used to quantify the dissimilarity between an observation 
and the center of a distribution, while accounting for correlations among variables. Given 
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an observation vector X, a sample mean vector 𝜇 and a covariance matrix Σ, the 
Mahalanobis distance is defined as: 

 𝐷(𝑋) = ඥ(𝑋 − 𝜇)்Σିଵ(𝑋 − 𝜇) (1) 

This distance generalizes the notion of Euclidean distance to correlated feature spaces 
by incorporating the inverse covariance matrix Σିଵ, which rescales the feature space 
according to its structure. In effect, Mahalanobis distance measures how many standard 
deviations a point is away from the multivariate mean, under the assumption of a 
Gaussian distribution. 

In the context of anomaly detection, Mahalanobis distance enables identification of 
outliers not merely based on large deviations in individual variables, but rather on rare 
combinations of values across multiple dimensions. This makes it particularly suitable for 
detecting subtle, coordinated deviations, such as those produced by occupant actions like 
window opening, which simultaneously influence temperature, humidity, and CO₂ levels 
in indoor environments. 

To enhance robustness against outliers in the training data and prevent distortion of 
the covariance matrix, the Minimum Covariance Determinant (MCD) estimator was used. 
The MCD method identifies a subset of the data with the smallest determinant of the 
covariance matrix, thereby yielding robust estimates of location and dispersion that are 
less influenced by anomalous points. Mahalanobis distances were computed using these 
robust estimates, and thresholding was applied based on the 99th percentile of the 
distance distribution to identify significant multivariate outliers. 

4. IMPLEMENTATION AND DISCUSSION 

4.1 Occupancy detection 

This research is using advanced statistical analysis to identify occupant entry and exit 
events in a residential apartment by analyzing indoor carbon dioxide (CO₂) concentration 
data measured at 15-minute intervals. The underlying assumption is that the presence of 
occupants leads to a sustained increase in CO₂ levels due to respiration, whereas the 
absence of occupants, particularly in a ventilated space, results in a gradual decline in 
CO₂ concentration. Accordingly, periods of occupancy are characterized by a rise in CO₂, 
typically initiated by a local minimum, while periods of absence correspond to a decline, 
typically initiated by a local maximum. 

To prepare the signal for analysis, all missing values are first removed and a centered 
moving average filter with a window of three data points (equivalent to a 45-minute span) 
was applied. This smoothing step aims at discarding high-frequency fluctuations such as 
sensor noise or brief disturbances in air quality, while preserving the overall shape and 
trend of the CO₂ signal associated with occupant behavior. 

After smoothing, local extrema in the CO₂ time series are identified by using the 
argrelextrema () function from the scipy.signal module. A point was classified as a local 
minimum (valley) if its CO₂ value was lower than those of its preceding and succeeding 
five neighbors, and as a local maximum (peak) if it was greater than those of its 
surrounding values over the same window. Valleys are interpreted as likely entry events - 
that is, the beginning of CO₂ accumulation due to a newly present occupant - whereas 
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peaks are interpreted as likely exit events, marking the point at which CO₂ accumulation 
ceases and decay begins. The output of this procedure is a sequence of time stamped 
valley and peak events, which serve as proxies for inferred occupancy dynamics. Only 
consecutive entry-exit pairs are considered. 

Figure 1 shows the illustration of the procedure’s outcome, namely shaded periods of 
occupancy as determined based on entry-exit pairs. 

 

Fig. 1 Zoomed periods of occupancy, based on inferred entry-exit pairs 

In order to validate the accuracy of the proposed method for detecting occupancy in 
the residential apartment, the analysis of the occupancy distribution over time of a day is 
carried out as reasonable alternative for comparing with non-existing ground truth data. 

 

Fig. 2 Inferred average hourly occupancy 

The bar plot in Figure 2 illustrates the average hourly occupancy in the monitored 
apartment, separated by weekdays and weekends, based on entry-exit detection inferred 
from CO₂ concentration dynamics. The most prominent pattern observed is the 
concentration of occupancy during nighttime hours, particularly from 22:00 to 07:00, on 
both weekdays and weekends. This sustained overnight presence suggests that the 
apartment is primarily used for residential purposes, where occupants spend the night 
indoors. The detection method which identifies entry events as CO₂ levels begin to rise 
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and exit events as CO₂ begins to decline, consistently captures long, uninterrupted periods 
of occupancy across these nighttime hours. This is indicative of sleeping or resting 
periods, where limited ventilation and continuous human presence lead to stable CO₂ 
accumulation and slow decay patterns. 

On weekdays, occupancy drops significantly after 06:00 and remains low through the 
midday and early afternoon hours, with a moderate rise in the late afternoon and early 
evening, suggesting re-entry into the apartment after daytime absence. This reflects 
typical out-of-home routines such as work or school, consistent with daily commuting 
patterns. 

In contrast, weekends exhibit a higher and more sustained level of occupancy 
throughout the morning (increased occupancy by 10:00 when compared with a workday 
distribution and from 13:00 on, corresponding to lunchtime), indicating prolonged 
daytime presence. This is typical for non-working days when occupants spend more time 
at home and align with residential lifestyle patterns during weekends. 

These findings demonstrate clear occupancy rhythms, with nighttime presence 
dominating all days, and distinct separation between weekday and weekend daytime use. 
For energy-efficient district heating control, this pattern suggests that daytime setback 
strategies could be applied dynamically on weekdays but should be minimized on 
weekends. Integrating occupancy-aware heating logic based on this type of behavioral 
inference can lead to significant energy savings while preserving occupant comfort. 

4.2 Window opening event detection 

To detect potential window opening events in district-heated apartments, a 
multivariate outlier detection method based on the robust Mahalanobis distance was 
applied. The analysis utilized time series data, including indoor temperature, indoor 
relative humidity, indoor CO₂ concentration, and ambient (outdoor) temperature. 

In the first step, feature engineering was carried out by computing first-order 
differences for the indoor temperature (diff_temp), relative humidity (diff_humidity), and 
CO₂ levels (diff_co2). These features capture the short-term dynamic changes in indoor 
conditions that are potentially indicative of ventilation events. Additionally, the 
difference between indoor and outdoor temperature (delta_temp) was included to account 
for the thermal gradient, which plays a key role in the intensity of temperature drops 
following window openings. To focus the analysis on realistic candidate events, the 
dataset was filtered to include only those time steps where the indoor temperature 
exhibited a negative difference (diff_temp <0), thus eliminating cases of temperature 
increase that are inconsistent with expected ventilation-induced cooling. The resulting 
feature set was standardized using z-score normalization to ensure scale invariance across 
variables. 

Outlier detection was then performed using the Minimum Covariance Determinant 
(MCD) estimator, a robust statistical method that minimizes the influence of extreme 
values when estimating the data distribution. The Mahalanobis distance was computed 
for each observation using the robust covariance matrix and mean estimated by MCD. 
Observations exceeding the 99th percentile of the Mahalanobis distance distribution were 
flagged as potential window opening events. 

To facilitate interpretability, Figure 3 was shown with visualized selected segments of 
the data that correspond to candidate events. Six index ranges were manually defined to 
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zoom into representative windows. For each segment, the temporal evolution of 
diff_temp, diff_humidity, and diff_co2 was plotted, along with the outdoor temperature 
(t_amb) on a secondary axis. Vertical red lines were overlaid to indicate the time stamps 
of detected events. This visualization allows for intuitive inspection of the dynamics 
around each anomaly and supports the interpretation that sudden drops in indoor 
temperature coinciding with changes in humidity and CO₂ concentration. The subplots 
indicate also notable differences in temperature drops depending on the outdoor 
temperature. 

 

Fig. 3 Selected segments with highlighted detected window opening events 

The histogram in Figure 4 below shows the distribution of detected window opening 
events across the hours of the day, restricted to workdays only. The x-axis represents the 
hour of the day (0 to 24), and the y-axis shows the number of events detected within each 
hour. The majority of window openings occur between 10:00 and 12:00, with a 
maximum at 11:00. This likely reflects mid-morning ventilation behavior in residential or 
semi-residential settings. A smaller number of openings occur early in the morning (5-6 
AM) and again in the evening (08-12 PM). These may correspond to morning routines 
(e.g., preparing for work, waking up) and evening relaxation or cooling after returning 
home or before bedtime. There is little to no activity in the early and late afternoon. This 
could suggest lower occupancy of the apartment (which is confirmed in the previous 
analysis) or that the indoor conditions remain stable enough to not prompt ventilation 
during this time. 
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Fig. 4 Distribution of window opening events over time of a day 

5. CONCLUSION 

The research supporting this paper demonstrates that behavioral signals such as 
occupant presence and window opening events in district-heated residential apartments 
can be reliably inferred from high-resolution environmental sensor data using 
unsupervised analytical methods. Presence detection based on CO₂ concentration trends 
successfully identified periods of apartment occupancy, while window opening events 
were detected by applying multivariate outlier detection on short-term changes in indoor 
climate parameters. The distribution of detected behaviors across time of day aligns with 
intuitive daily routines, confirming the interpretability and relevance of the identified 
events. This led to the conclusion that the initial hypothesis has been confirmed. 

The integration of such consumer behavior detection into District Heating System 
(DHS) operations presents a valuable opportunity to transition from supply-centric to 
demand-aware control strategies. By embedding inferred behavioral states, such as 
ventilation and occupancy, into predictive and real-time control models, DHS operators 
can more accurately anticipate thermal needs, avoid unnecessary heat delivery during 
absences, and better accommodate user-driven ventilation actions. This can lead to 
improved energy efficiency, reduced peak loads, enhanced indoor comfort, and 
ultimately, lower greenhouse gas emissions. 

It is important to highlight that the presented research only explores the feasibility of 
using the method to detect occupancy and window opening events on the full time series, 
not on a data stream, which is a more difficult problem, but leading to a more practical 
solution for improved consumer-behavior-aware DHS control. 

Future work should focus on scaling the proposed approach across diverse building 
types, occupant profiles, and climate conditions to assess generalizability. Additional 
research is also needed to validate detected behaviors against ground truth data where 
available and to quantify the potential energy and cost savings from integrating 
behavioral insights into control logic. Moreover, real-time implementation frameworks 
and privacy-preserving analytics should be developed to support practical deployment in 
live DHS operations. 
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