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Abstract. The deep drawing process is a metal forming technology that requires the 
analysis of several influencing factors. Its finite element simulation is a challenge 
because it is a variable nonlinear stress-strain state within a sheet that must meet four 
conditions. Two models have been developed to determine the value of plastic 
deformation, updated Lagrangian formulation and Eulerian formulation. When 
processed at low or room temperature, there is a strong hardening effect based on 
Drucker's postulate for stable plastic materials or the postulate of plastic potential. The 
generated FEM model for deep drawing follows the temperature field, velocity field 
and plastic deformations in the wall of the extracted element at the given transitional 
radius of the punch and the die. 
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1. INTRODUCTION 

Estimates of the world economy show that, on a global level, about 420 billion 
different types of metal cans (small or larger containers) are produced annually for the 
needs of food packaging and other consumer goods, with a continuous tendency to 
increase. Out of that number, 330 billion units refer to unavoidable beverage cans, most 
often made of an aluminum alloy, while about 85 billion units refer to other metal 
packaging, both for food and non-food products. Of the total price per unit of such 
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packaged food products, 50% to 70% refers to the metal packaging itself. These numbers 
indicate that this is a mass-producing industry where profits are very high and where 
small technological solutions and improvements can greatly reduce variable costs 
(reducing sheet metal thickness by 0.1mm brings incredible savings). 

 
Fig. 1 Metal containers as packaging 

Sheet metal forming is the most common metal shaping process used in the history 
[1]. Most anisotropic yield functions have been based on the associated flow rule 
hypothesis. This approach is based on the normality hypothesis that describes the equality 
of the plastic potential function (which determines the flow direction) and the yield 
function (which determines the transition from the elastic to the plastic regime). Several 
studies have evaluated the accuracy of the associated flow-rule based yield functions for 
the description of various levels of anisotropy. For instance, Yoon et al. [2] reported that 
the quadratic Hill (1948) and non-quadratic Yld2000-2d [3] yield functions can only 
predict 4 ears for a deep drawn cup made of an aluminium alloy AA2090-T3 which 
exhibits 6 ears in experiments. The authors [6] reported similar limitations for the same 
material based on the anisotropic yield function [7]. Therefore, it can be concluded that it 
is difficult to describe a highly anisotropic material by means of a model in which an 
identical formulation for the yield function and plastic potential function is used [8]. 

Sheet metals exhibit either isotropic or anisotropic yielding behavior. An isotropic 
yield surface is assigned to a material with identical mechanical properties at different 
orientations. Various isotropic yield functions are available such as von Mises, Tresca, 
Hosford, Hershey, Barlat and Richmond, Bishop, Hill, Bassani, Budianski. However, 
sheet metals are prone to anisotropic behavior which is mainly related to the rolling 
direction [9]. This is because sheet metals (generally) undergo severe plastic 
deformations during manufacturing processes such as cold rolling. This introduces 
preferential orientations to the grains. Consequently, the material obtains a direction 
dependent mechanical behavior. Material anisotropy highly affects the distribution of 
stresses and strains and consequently the shape of the final parts, their thickness and 
possible instabilities such as wrinkling for a deep drawn part. 

2. THEORETICAL BASIS 

Besides the measure of plastic deformation and the plastic stress-strain relations, we 
need four more data points for the analysis of plastic deformation. These four things are 
as follows [4].  
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The first is that, in metal forming processes, the metal first behaves elastically for 
small deformation and then behaves plastically as the deformation grows. Therefore, we 
need a criterion which tells us when the elastic behavior ends and the plastic behavior 
begins. Such a criterion is called the yield criterion. It is usually represented as a scalar 
function of the stress components. We need to develop the (initial) yield criterion of the 
metal used. Second, for achieving continued or subsequent plastic deformation beyond 
initial yielding, additional stress needs to be applied. It means, in subsequent yielding, the 
initial yield criterion keeps changing with the level of plastic deformation. This 
phenomenon is called hardening. To model the hardening behavior, we need to develop 
the criterion for subsequent yielding. Third, when a combination of the stress components 
decreases, the material again behaves elastically. This is called the unloading 
phenomenon. To model this phenomenon, we need to develop the unloading criterion. 
Fourth, the constitutive equation for plastic behavior is usually expressed either in the 
rate form or in the increment form [5]. The stress tensors which appear in these 
constitutive equations have to be objective, i.e., they have to be invariant under a change 
of reference frame. Whereas the Cauchy stress tensor is objective, its rate or increment is 
not objective. 

Therefore, we need to develop the objective stress rate and objective incremental 
stress measures. A constitutive equation for large elastic deformation is also sometimes 
expressed in the rate or incremental form. In that case, the stress measures appearing in 
these constitutive equations also have to be objective. 

Two common measures of plastic deformation, namely the incremental linear strain 
tensor and the strain rate tensor, are developed. The first is valid only for a small 
incremental deformation and the relation between the two measures is also discussed. 
The incremental linear strain tensor is useful in the analysis of processes such as forging, 
deep drawing, and sheet bending, etc., which are amenable to incremental formulation, 
called the updated Lagrangian formulation [4, 5]. 

We have noted that a gradient of a vector is a tensor. Therefore, the quantity ∇(du), 
which is a gradient of the vector du with respect to the current position vector x, is a 
tensor. Since the gradient is not in line with the initial configuration, here the operator ∇ 
does not have the subscript zero as in the gradient symbol. The components of ∇(du) 
with respect to the (x, y, z) coordinate system are given by: 
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We have seen that if u is the displacement from the initial configuration to a deformed 
configuration, then the symmetric part of the gradient of u (with respect to the position 
vector in the initial configuration) can be chosen as a measure of that deformation, 
provided the deformation is small. Now, assume that the incremental deformation from 
the current configuration is small. Mathematically, this assumption means that the 
components of the tensor ∇(du) are small compared to 1. Since du is the incremental 
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displacement from the current configuration, the symmetric part of the tensor ∇(du) can 
be selected as a measure of the incremental deformation. Thus, our measure of 
incremental deformation is tensor dε, which is the symmetric part of ∇(du) called the 
incremental linear strain tensor [4, 5]. 

The relation between tensor dε  and incremental deformation du, in tensor notation, as 

 
[ ]))(()(

2
1 Tdudud ∇+∇=ε

 (2) 

is called the incremental strain-displacement relations. 
To find the incremental displacements, incremental strains and incremental stresses in 

a deformable body, one needs to solve three sets of incremental equations in the current 
configuration. Such a formulation is called the updated Lagrangian formulation. The 
above equation is a first set of governing equations for this formulation when the 
incremental deformation is small [1]. 

The physical interpretation of the components of dε is similar to that of the 
components of the linear strain tensor. The component dεxx represents the change in 
current length per unit of the current length along the x-direction. The components dεyy 

and dεzz have a similar interpretation. The component dεxy represents half the change in 
angle between the directions which are currently along x and y directions. The 
components dεyz and dεzx have a similar interpretation. The sign convention for the 
components of dε is the same as that of the components of the linear strain tensor. Just 
like the linear strain tensor, the tensor dε has principal values, principal directions, 
principal invariants and the hydrostatic and deviatoric parts. They are defined similarly. 
The incremental volumetric strain dεv, when the incremental deformation is small, is 
defined by the equation: 

 iiv dd εε =  (3) 

It can be shown that, the tensor dω  represents the incremental rotation of a neighborhood 
of the particle at time dt: 
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 (4) 

The rotation is small if the components of the tensor ∇(du) are small compared to 1. It is 
called the incremental infinitesimal rotation tensor. 

The strain rate tensor is employed in the analysis of rolling, drawing, extrusion, etc., 
where the analysis is carried out by fixing a region in space (called the control volume) 
and observing the deformation of the material particles as they pass through the control 
volume. This formulation is known as the Eulerian formulation. 

In this formulation, it is not convenient to analyze the deformation increment by 
increment. Instead, it is easier to study the deformation of the whole control volume 
simultaneously. This becomes possible by choosing the velocity as a primary variable 
(instead of the incremental displacement). Further, in this case, it is the rate of 
deformation which is the more relevant secondary variable than the deformation itself [4]. 
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3. FEM MODELING OF THE DEEP DRAWING PROCESS 

A cylindrical deep drawing element was chosen for the analysis, and as it is an 
axisymmetric stress-strain state, it is enough to take one-eighth of the entire blank in 
order to make the process modeling more efficient (Fig. 2). The preparation has a radius 
R0 = 33mm and a thickness s = 1.5mm, the radius of the punch is Ri = 14mm with a 
radius ri = 7mm. The radius of the moving matrix is Rm = 16mm with a transition radius 
rm = 6mm. The constructive clearance between the die and the punch is 2mm.  

        
Fig. 2 3D model of deep drawing tool and FEM mesh of the key parts 

The final height of the deep drawing part is hi = 37.4mm. The density of the sheet metal 
is ρ = 2700 kg/m3, Young’s modulus E = 206⋅106 N/mm2, Poisson’s ratio ν = 0.3 and 
yield stress σo = 235 N/mm2 are known for the blank material (Fig. 3). 
 

 
Fig. 3 True stress vs. true strain curve of aluminum alloy 

On the FEM 3D model, we have several characteristic contact surfaces on which the 
coefficients of friction are defined, which have a decisive influence on the deep drawing 
process. The coefficient of friction between the blank and the flat surfaces of the die, i.e., 
at the transition radius rm, is µp = 0.15. The coefficient of friction between the blank and 
the sheet blank holder is µb = 0.1, while the coefficient of friction between the punch and 
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the blank is not taken into account here because the relative movement and sliding of the 
blank around the surface of the punch almost does not exist. 

Each of the tool elements can be represented by a FEM spatial network that can only 
follow the elastic deformations of key tool elements in order to approach their 
optimization of the shape, geometry and dimensions of key parameters.  

To get the rate of deformation based on the FEM analysis, a small piece of blank 
volume (the so-called control volume) has been traced during the deep drawing process 
(Fig. 2). Point P indicates the location of a particle in the material. The typical trajectory 
of the material particle is also shown in Figure 2. Let x be the position vector of point P 
and v be its velocity: 

 kvjvivv zyx
ˆˆˆ ++=  (5) 

We define the tensor ∇v (at point P) as the gradient of v with respect to the position 
vector x. It is called the velocity gradient tensor. Its components with respect to the (x, y, 
z) coordinate system are given by: 
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We decompose the tensor ∇v into a sum of symmetric and antisymmetric parts. Let us 
define the tensor ε̇ as the symmetric part of ∇v: 

 
[ ]Tvv )(

2
1

∇+∇=ε
 (7) 

It can be shown that the tensor ε̇  completely describes the rate of deformation at a 
point. That is, given the tensor ε̇ at point P, we can find the rate of change of length per 
unit length in any direction at that point. Further, we can also find the rate of change of 
angle between any pair of perpendicular directions at that point [2, 3, 5]. The tensor ε̇ is 
called the strain rate tensor. The tensor ε̇ represents the rate of deformation at a point 
irrespective of whether the rate of deformation at that point is small or large. Further, 
even though we use the symbol ε̇ , commonly employed in metal forming literature for 
this tensor, it is to be noted that this tensor is not the time derivative of the linear strain 
tensor ε. In references to continuum mechanics, this tensor is usually denoted by D and is 
called the rate of deformation tensor [7]. 

Hardening behavior is modeled by developing a criterion for subsequent yielding. 
While doing so, it is assumed that the hardening is isotropic. The first approach for 
developing the plastic stress-strain relations is based on Drucker’s postulate for stable 
plastic material. The second approach is based on the postulate of plastic potential. 
Starting from the postulate of plastic potential, we firstly discuss the associated flow rule 
and then develop the following two constitutive equations: 
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• elastic-plastic incremental stress-strain relation for the updated Lagrangian 
formulation and  

• elastic-plastic stress-strain rate relations for the Eulerian formulation.  

While developing these relations, it is assumed that the elastic and plastic parts of the 
deformation are additive. This is true for the incremental linear strain tensor only when 
the incremental deformation is small. For the strain rate tensor, it is true if the rotation is 
small. 

The movable die (yellow color), in the upper part of the tool, with its action through 
the increasing drawing force Fi (Fig. 2), acts on the round blank (red color) which is in 
continuous contact with all moving and fixed parts of the tool. Fixed adhesion at the 
bottom of the drawing element (magenta color) ensures controlled plastic deformation 
and the necessary ejection of the finished part at the end of the deep drawing process 
from the die. On the moving die, the transitional radius of the die rm plays an important 
role over which the deep drawing process takes place. This radius can be given if the 
geometry of the finished part with the flange is defined or constructively chosen if the 
finished part without the flange is being drawn out, where it is necessary to draw out the 
whole part through the die. A necessary tool element for this type of plastic deformation 
is almost always a blank holder (blue color) which provides (protects?) the entire process 
of deep drawing (Fig. 2) from the unwanted appearance of wrinkles on the flange of the 
element. Its pressure on the annular part of the blank, over the force Fd should be 
constant with the fact that the surface under the blank holder is constantly decreasing 
during the deep drawing process. With the blank holder, we ensure the nonappearance of 
wrinkles on the flange of the element, i.e., the normal stress in the radial direction is 
increased so that the normal stress in the tangential direction would not cause the 
appearance of wrinkles. The high force of the blank holder can increase the normal 
stresses in the radial direction largely, so in the case of thinner blanks it is very easy to 
break the structure of the part and cracks may appear near the transition radius. 

This paper aims to present a multi-criteria h-adaptation approach based on error 
estimators and mesh metrics intersections, which has been successfully introduced in the 
FORGE® software. It allows one to automatically and dynamically generate meshes 
adapted to very complex flows and geometries with a very high parallel efficiency.   
Fully parallel meshing and remeshing is performed using the so-called topological 
mesher combined with partitioning/repartitioning strategies [5, 6]. This mesher enables 
one to generate an anisotropic mesh (2354 tetrahedral elements) by using a linear 
tensorial field as an input called the mesh metric. This metric is obtained through the 
combination of three metric fields. The first metric is deduced from an error estimator 
dedicated to the adaptation of the mesh to the material flow and physical data variations 
capture. The second metric, skin metric, is deduced from a skin adaptation strategy, and 
the third is a metric based on geometrical curvature adaptation. 

The increase of stress in the radial direction occurs due to plastic deformation of the 
sheet metal (75%), due to friction on the contact surfaces of the die, blank and blank 
holder (15%) and due to bending and straightening on rounded tool edges (5%). 
The process of metal forming by the technology of deep drawing follows the increase of 
the temperature inside the metal continuum in the moving focus of deformation. Namely, 
the change of shape and a large degree of deformation near the transition radius causes an 
increase in temperature from the reference 20°C to the level of 32.57°C near the radius of 
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the punch. As the deep drawing process takes place, so does the temperature peak near 
the node 1950 of 23.75°C move over the sheet volume (Fig. 4). If the deformations are 
larger, i.e., if the deep extraction takes place over a smaller radius, then the irreversible 
heat generation is more pronounced. In this simulation model, the temperature peak shifts 
as the deep drawing process takes place. At the end of the interval, the deformed metal 
continuum reaches a temperature of 47.24°C, but at a transition radius with a die, where 
the frictional force at the contact of the tool and the blank material also contributes to that 
(Fig. 4). 
 

      
Fig. 4 The temperature field near the transfer radius, node 1950 

   
Fig. 5 Velocity field in the x, y and z directions near the transfer radius of the die (node 

313) 

As a consequence of plastic deformation, there is an intense movement of the material 
parts, which is manifested by different speeds of the selected node in the directions of the 
x, y and z coordinate axes (Fig. 5). The selected node of the finite element network 313 
has the following velocity vx = 5.36mm/s, vy = 3.09mm/s and vz = 2.05mm/s. 
 

 
Fig. 6 Elements of stress tensor σxx, σyy and σzz near the transfer radius of the die (node 

615) 



 FEM Analysis of Deep Drawing Process 9 

The field of plastic deformations corresponds to the field of principal stresses that can 
be followed by the volume of deformed sheet metal (Fig. 6). The principal stresses of the 
tensor in the selected node 615 at the transition radius of the moving die have the 
following values: σxx = -191.25 N/mm2, σyy = -380.9 N/mm2, σzz = 151.08 N/mm2. As this 
is the end of the deep drawing process, negative stresses in the tangential direction and 
positive stresses in the radial direction dominate, which can often cause destruction of the 
drawing element because the force of the blank holder is not proportional to the contact 
surface, i.e., higher pressures than the optimal have occurred. This does not include the 
variability and optimal values of the force of the blank holder because it requires a special 
analysis of the deep drawing technology. 

The stress distribution in the domain of plasticity, according to Von Mises, is given in 
Fig. 7, where the critical element is precisely the radius of the die at the final moment of 
deep drawing. The software recognizes the occurrence of unwanted wrinkles that appear 
on the walls of the real drawing element. 
  

    
Fig. 7 The Von Mises stress disposition on the wall of the deep-drawn element 

4. CONCLUSION 

The FEM model presented in the paper just about perfectly reflects the state of the 
material in terms of the temperature field and stress field according to the wrinkle of the 
deep-drawn element. The temperature field according to the wall thickness shows good 
values of temperature in the nodes of the finite element mesh with the measured values 
on the wall. In the areas with intense plastic deformation, we have a larger increase in 
temperature, while at the bottom, where there is no change in shape, that part of the 
volume remains at the level of the external (ambient) temperature. The relative velocities 
in the x and y directions have almost the same change over the height of the part, while 
the change in the z direction is somewhat different because in that direction we have an 
increase in the height of the part. 
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