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Abstract. The paper presents the results of a numerical simulation for the viscous fluid 
flow in a slot with cosinusoidal temperature distribution on the lower plate with the 
increasing slope of the plates with respect to the horizontal line. The numerical 
simulation is performed using the Fourier Galerkin method in the x-axis direction and 
the Chebyshev collocation method in the y-axis direction. The stream function-vorticity 
formulation of the Navier-Stokes equation in the Oberbeck-Boussinesq approximation is 
used. The uniform Rayleigh number Rauni=250 and the periodic Rayleigh number value 
of Rap=15,30 is employed in the numerical simulation for the fluid with Pr=7 (water). 
The horizontal convection known as thermal drift is observed at the angle of inclination 
05 for Rap=15 and 015 for Rap=30. The stream function values are compared 
with the similar values for different combinations of Rauni, Rap values. This comparison 
shows a different behavior of the averaged Nusselt and the friction coefficient number 
for these situations. The results suggest that the ratio between Rauni and Rap is very 
important for the heat and momentum transfer between the plates. In the first two cases 
we have optimal value of heat transfer when =10o, but for Rauni=500 and Rap=30 the 
maximal value of Nu,av is obtained for =0o. 

Key words: Inclined fluif flow, Natural convection, Subcritical condition, Heat transfer 
intensification Numerical simulation 

1. INTRODUCTION 

When the heating intensity is below the critical threshold required for the onset of 
Rayleigh-Bénard convection (RBC), heat transport across a horizontal fluid layer 
uniformly heated from below is driven by conduction, placing a limit on its magnitude. 
The critical conditions required to achieve this critical threshold are well known [1,2]. A 
methodology to increase the heat flow using the spatial heating non-uniformities is 
proposed. The non-uniformities create convection whose pattern is dictated by the heating 
pattern. This convection supplements the conductive heat transport. It has been shown that 
the effectiveness of this convection, the primary convection, is a strong function of the 
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heating wave number and it may increase the heat flux by up to ten times compared to the 
conductive state if the most effective heat wave number is used [3].  

Convection occurs from the conductive state when critical conditions are exceeded [4] 
and it changes the heat flow character in qualitative terms. These critical conditions are 
expressed in terms of the critical Rayleigh number Racr, with secondary flow occurring 
when Ra>Racr. RBC has the form of rolls and is characterized by a linear neutral stability 
curve with a well-defined minimum. It identifies the critical Rayleigh number and the 
critical wave vector, with the onset conditions independent of the Prandtl number. 

The explicit estimate for maximum heat transfer has been recently published [5]. The 
use of more intense heating leads to secondary bifurcations and the onset of either skewed-
varicose instability, the Eckhaus instability, or the zig-zag instability [6,7], described by 
using the so-called Busse balloon. Linear stability theory does not offer any guidelines 
regarding the spontaneous pattern selection which, in most experiments, is determined by 
secondary effects. A large enough heating intensity leads to turbulent RBC [8-10]. The 
effects of geometric non-uniformities on such convections have been the subject of recent 
studies [11]. 

Inhomogeneities of the plate geometry can affect the onset conditions [12-14]. The 
detailed analysis and identifications of the relevant mechanisms are not available. Two-
dimensional convection rolls have been observed for subcritical conditions Ra<Racr for the 
lower plate being augmented with thin stripes. The amplitude of these rolls grew with Ra 
until they were destabilized by a mechanism which depended on the ratio between the wave 
number of the imposed modulation and the critical wave number of the RBC, producing a 
variety of three-dimensional patterns [12,13]. Recent studies have shown that the state of 
conduction does not exist only in the presence of geometric modulations, and a natural 
convection sets in regardless of the heating intensity [15]. The properties of this convection 
are expected to have a strong effect on the secondary states. Temperature non-uniformities 
also affect the onset conditions [16], as well as create their own convection, which occurs 
regardless of the heating intensity [17-19]. 

2. MATHEMATICAL MODEL 

The differential equations that govern the viscous fluid flow in a slot with an inclination 
to the horizontal line are 
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with the appropriate boundary conditions 
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The initial conditions for the variables (x,y,t), (x,y,t), T(x,y,t), (t) read 
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where ∆T = Tw2 - Tw1 is the temperature difference between the homogeneous part of the 
lower wall temperature Tw2 and the homogeneous temperature of the upper wall Tw1. In 
Eqs. (1-5) the following notation is used: v


- velocity vector, 


- vorticity vector, F


-

volumetric force per unit mass,  -stream function vector, T- temperature, -kinematic 

viscosity (momentum diffusivity), κ=λ/ρcp -thermal diffusivity, -thermal conductivity, -
fluid density, cp-specific heat at constant pressure, q -heat flux per unit volume,    
-Laplacian of a scalar or vector field, as a scalar product of the nabla operator  with itself. 
In Fig. (1) we have designated: H-the distance between the parallel plates, L-the length of 
the periodic slot filled with the viscous fluid, Tw1- the temperature of the upper colder plate, 
Tw2- the homogeneous part of the warmer lower plate temperature, Tp -the peak to peak 
amplitude of the lower plate periodic temperature,  - the periodic temperature wave 
number. 

 

Fig. 1 Physical model of the viscous fluid flow with an inclination angle . 

In the Oberbeck-Boussinesq approximation, density changes only in the force term of 
the momentum equation according to V = V0 [1+(T-T0)]. =1/T - thermal expansion 
coefficient (3103 for gases and 5104[K1] for liquids), so for m=const. we have 
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After substituting Eq. (6) into the buoyancy force term in the vorticity transport Eq. (1), 
which only considers the fluid density variations, we obtain 

    01 sin cos .F T T g i j        
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 (7) 

Here we have anticipated T0 = Tw1 and that the plates can be parallel to each other but with 
some inclination angle  to the horizontal line. The results of numerical simulation in this 
paper are limited to the case where 0º,5º,10º,15º,20º, and x,y are the longitudinal and 
transverse coordinate, and g-gravity acceleration. In order to obtain the nondimensional 
form of the previous equations, we have used the following expressions 
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We have chosen the length scales in the direction of the x- and y-axes in accordance with 
the domain of basic functions, using the Fourier expansion in the x-direction and the 
Chebyshev expansion in the y-direction. We have also used the following nondimensional 
parameters 
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In the expressions above Rauni and Rap represent the uniform and periodic Rayleigh 
numbers measuring the intensity of the uniform and periodic heating component, Pr is the 
Prandtl number as a ratio of the momentum diffusivity   to thermal diffusivity , a is the 
aspect ratio of vertical to horizontal slot dimensions, Re is the Reynolds number,  is the 
heating wavelength and  is the periodic heating wavenumber on the lower wall. The field 
equations, which consist of vorticity transport Eq. (1), the definition of vorticity 
substituting the continuity Eq. (2), and thermal energy transport Eq. (3), now have the 
following nondimensional form 
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The boundary and initial conditions in the non-dimensional form are the following 
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If the plates are inclined with respect to the horizontal plane by the angle , the value 

of net flow rate in the x-axis direction      
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computed, and it usually has a negative value for 0, since the velocity component 
u(x,y) is predominatly negative for xconst. and for positive angle . The function

  g t is the nondimensional volumetric flow rate through the channel’s cross-section. 
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initial conditions for the fields of stream function, vorticity and velocity are equal to zero, 
but we anticipate linear temperature distribution between the plates, since at that instant of 
time the temperature distribution is homogeneous at both plates for the constant value of 
Rauni. The boundary conditions at the lower plate are applied gradually over a certain period 
of time 0<t<2, until the values of Rauni and Rap are achieved. 
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In order to achieve such a numerical simulation, we use the four time-level, third order 
temporal discretizing procedure AB/BDI3 [20]. This semi-implicit method applies 
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generally to nonlinear Eqs. (10) and (12) where the coefficients of the linear operator are 
constant. This is the case of Navier-Stokes equations for incompressible fluids with 
constant viscosity, and also its counterpart vorticity transport Eq. (10). This linear term is 
considered implicitly, and the nonlinear term is explicit, so that the resulting discrete 
operator is time-independent and can be inverted or diagonalized in a pre-processing stage, 
before the start of time-integration. Such time discretization is commonly associated with 
Fourier and Chebyshev spatial approximations. The details of the spatial and time 
discretization procedure have been described in [20-22]. Further on, we drop  for the 
nondimensional notation, but all variables are considered as dimensionless. 

3. THE RESULTS OF NUMERICAL SIMULATION  

Eqs. (10-12) with boundary and initial conditions, Eq. (13), have been solved numerically 
by using the influence matrix method [23] for determination of boundary conditions for 
vorticity, since they are unknown in the above Eq. (13). The in-house numerical code has 
been developed in MATLAB. The results of numerical simulation are displayed in this 
section. The Fourier-Galerkin spectral method has given an accurate spatial resolution with 
KNx/264 modes, and Ny =128 as Gauss-Lobatto-Chebyshev points, and for temporal 
discretization we have used the time step t300, and the angle of inclination increment 
 201801150/1350. The temperature field must be calculated at the time level n+1, 

i.e. where 1ˆ n
k  are the temperature Fourier modes, so the implicit methods must be used. 

The used time step t=/300 is sufficiently small so that the numerical diffusion error can 
be neglected. All elements of discretization have spectral accuracy, so the global accuracy 
of the computations is controlled by changing the number of Fourier modes and Chebyshev 
polynomials appropriately. All the results presented in this paper were obtained with an 
accuracy of at least four digits. 
We can see the dimensionless stream function and streamlines (=const.) for subcritical 
Rayleigh numbers Rauni  250, and two different values for periodic Rayleigh numbers Rap 

15 and Rap  30, aspect ratio a 1, where the critical value for this flow for both plates 
with homogeneous temperature distribution is Racr1708 for the wave number of 
disturbance cr3.16. So, for this value of Rauni, there should not be any flow, for uniform 
temperature distribution at the lower wall (Rap=0). 
Since we have the cosinusoidal component of temperature distribution at the lower plate – 
the so-called periodic temperature Tp, with dimensionless value Rap0, the fluid motion 
sets in regardless of the value of Rauni, if it does or does not reach the critical value Racr. 
Fig. (2) shows these five scalar fields for five different angles of inclination 0, 5/180, 
10/180, 15/180, 20/180 at the instant of time t=/2, 5/8, 6/8, 7/8, , respectively. 
The wave number of periodic temperature distribution at the lower plate is 2 for this 
simulation, and there is no temperature phase shift (0) on the lower wall. The numerical 
results for stream function are similar in the spatial distribution, but not in their intensities 
for different inclination angles . 

Hot spots, locations where periodic temperature on lower plate attains its maximum, 
are located at x*=0,,2=n2/, for n=0,1,2 and cold spots positions where the periodic 
component of temperature attains its minimum are located in x*=/2,3/2=(2n+1)/ for 
n=0,1 in accordance with the temperature distribution given by (12) and periodic 
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temperature wave number 2 on the lower wall. In the instant of time t/2, when 0, 
Rap and Rauni attain their maximal values according to Eq. (14) and remain constant for 
t/2. In Fig. (2.a and b), where the dimensionless stream function distribution x,y,t is 
displayed, we can see two pairs of rolls which rotate in the clockwise (blue area) and 
counterclockwise directions (orange area). Just above these hot spots, the fluid motion is 
directed upwards, hits the upper cooler surface, splits into two streams parallel with plates, 
gets cooled and its density gets higher and then drops from the upper to the lower plate at 
x*=/2,3/2 in cold spots, where the temperature achieves its minimum according to Eq. 
(12). The fluid rises above the hot spots and descends toward the cold spots forming 
counter-rotating rolls displayed in Fig. (2.a) for Ra=250 and Rap=15 and in Fig. (2.b) for 
Ra=250 and Rap=30. The nondimensional stream function intensity x,y,t can be 
compared for five different inclination angles =0,5,10,15,20, at the corresponding 
instant of time t=/2, 5/8, 6/8, 7/8, , respectively, see Fig. 2 (a,c,e,g,i), after the 
periodic Rayleigh number achieves its value Rap 15 and Rauni250 at the instant of time 
t/2. Two pairs of rolls rotate with the same intensity for 0, but in the opposite direction, 
displayed in Fig. 2a for Rap 15 and in Fig. 2b for Rap 30, clockwise - negative direction 
(blue color) and counterclockwise - positive direction (orange color), and the extreme 
values of stream function are max(2.307,0.0)0.1306, min(3.902,0.0)0.1306 for Fig. 2a 
and max(2.319,0.0)0.2565, min(3.89,0.0)0.2565 for Fig. 2 b. 

The borders between rolls overlap with the peaks and bottoms of fluid temperature 
distribution. They are depicted in Fig. 5a and Fig. 5 b, which also overlap with the hot and 
cold spots on the lower wall. In Fig. 2b, d, f, h, j we can see stream function distribution 
and streamlines (=const.) for Rap 30 and Rauni250 for five different inclination angles 
=0,5,10,15,20, at the corresponding instant of time t=/2, 5/8, 6/8, 7/8, , 
respectively. We see in Fig. 2d, f that counterclockwise rotating rolls (orange one) get 
weaker, lose its intensity of rotation and shrink in the x-direction, but the clockwise (blue 
one) rotating rolls get stronger, increase their magnitude and extend in the x-direction with 
the increasing angle of inclination . The convection intensity represented by these values 
of stream function is almost double in value max(2.319,0.0)0.2565 for Rap=30, than for 
Rap=15 when it is max(2.307,0.0)0.1306 for 0 which can be noticed on the right hand 
side color bar. When the slope of the plates is increased with respect to the horizontal line 
to the value 5, Fig. 2d, the upward fluid flow above the hot spots splits into two branches 
when it hits the upper plate. The first one goes left and downward and the second one goes 
right and upward beneath the upper plate. When the inclination angle  is positive, i.e. in 
the counterclockwise direction, more fluid goes right than left, because the warmer fluid 
with less density goes up beneath the plate, since the buoyancy force in this direction is 
stronger. This is the reason why with the increasing inclination angle , positive rotating 
rolls shrink, and negative rotating rolls expand. The second consequence is that the center 
of the positive rolls moves downward and both rolls move to the left in the negative x-axis 
direction, due to the component of buoyancy force parallel to the plates for . Fig. 3d 
displays patterns with the flow topology consisting of sets of rolls separated from each 
other by a stream tube weaving up and down and carrying fluid in the negative x-direction, 
for our case . In Fig. 3f the positive rotating rolls can be barely noticed with  
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Fig. 2 Stream function and streamlines distribution for Rauni=250, Rap=15, different 
angles , a) 0, c) 5, e) 10, g) 15, i) 20, and distribution for Rauni=250, 

Rap=30, for different angles , b) 0, d) 5, f) 10, h) 15, j) 20 
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their centers near the lower wall at positions x2 and x5.14, and negative rotating central 
rolls expand almost to whole central area of the slot. In Fig. 3f the fluid almost stops 
weaving up and down and is restricted to the slot part close to the lower wall to stream in 
the negative x-direction and close to the upper wall where the stream flows in the positive 
x-axis direction, which is more evident in Fig. 3h, j.  

The intensities of convection displayed by min indicate that with the increasing slope 
angle , this extreme value of stream function gets higher absolute values, and the 
convection in the slot middle is intensified before it gets the quasi-one-dimensional flow 
pattern at the higher values of , Fig. 2i, j. The horizontal convection – known as thermal 
drift [24], can be seen only in Fig. 2d as weaving up and down between the rolls in the 
negative x-direction and cannot be seen in Fig. 2c since the positive rotating rolls almost 
disappeared at 5 and the center of these two baby rolls is very close to the lower wall 
and can barely be seen in Fig. 2c. The horizontal convection could probably be better 
presented for the value of Rap=15 for smaller values of , better to say for the value 05, 
since at this value of Rap the process of shrinking the positive rotating rolls and moving of 
their centers to the lower wall is almost completed for 05. 

For a higher value Rap=30 and the same Rauni=250, this process is completed for the 
interval 010, but for Rap=30 and the same Rauni=500 [25], the process of shrinking the 
positive rotating rolls and expanding the negative rotating rolls is extended to the interval 
020 when at =20 the counter-clockwise rotating rolls become baby rolls near the 
lower wall and finally disappear with a further increment of the inclination angle . 

 

Fig. 3 Distribution of Nusselt average number Nuav and average friction coefficient Cf,av 
× Re/2 for five different angles of inclination 0,5,10,15,20 for Rauni=250, Rap=15. 

 
Fig. 4 Distribution of Nusselt average number Nuav and average friction coefficient Cf,av × 
Re/2 for five different angles of inclination 0,5,10,15,20f or Rauni=250, Rap=30. 
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Fig. 5 Distribution of Nusselt average number Nuav and average friction coefficient Cf,av × 
Re/2 for five different angles of inclination 0,5,10,15,20for Rauni=500, Rap=30. 
 

Fig. 3 shows the Nusselt and friction coefficient average number in dependence of the 
inclination angle  for Rap=15 and Rauni=250. We can see that Cf,av is a monotonic 
increasing function of , and the Nu,av is an increasing function for the interval 010, 
but a decreasing function for 1020. The Nusselt number achieves the optimal value 
for =10. Fig. 4 shows the functions Cf,av() and Nu,av() for Rap=30 and Rauni=250. The 
distribution of functions Cf,av()and Nu,av () is very similar with the previous one. The 
slope of the function Cf,av() gets higher values for interval 1020, than for 010. 
This value =10 is the optimal inclination angle for the Nusselt number, where it achieves 
its maximal value. The situation is quite different if we double the value of the uniform 
Rayleigh number Rauni, as it is shown in Fig. 5. 

In this figure we can notice that Cf,av() achieves its maximum for =5, and afterwards 
it is a monotonic decreasing function with respect to . In the same figure we see that 
Nu,av() is a monotonic decreasing function on the whole domain. We can notice that both 
tend to decline with the increasing inclination angle . Both values have been calculated 
for the lower plate, where the Nusselt number is displayed in the absolute value, since its 
values on the lower plate have a negative sign. This can be explained by the fact that 
thermal energy goes from the lower to the upper plate, and the lower one loses and the 
upper one gains thermal energy. We can see some small increment of the friction 
coefficient for the angle of inclination =5. The results are in accordance with the results 
displayed in [26, 27]. The function Nu,av() gets slightly higher values for Rap=30 than for 
Rap=15 if Rauni=250 in both cases, but if we double the value of the uniform Rayleigh 
number to Rauni=500, the increase in the values of function Nu,av() is significant and 
amounts to almost 50%. The ratio between Rauni/Rap is an obviously significant control 
parameter in obtaining the optimal value of Nu,av ,Cf,av and ReCf,av()/2. 

4. CONCLUSIONS 

We have discussed the system’s response when the uniform and periodic heating 
components are combined. The very small periodical heating Rap=15,30 together with 
uniform heating Rauni=250, which is below the critical value Racr1708 for homogeneous 
temperature distribution on the plates, forms the flow patterns presented in Fig. 2 for fields 
of stream function. The aspect ratio aH/L has been chosen to be a1, and its influence 
on convection intensity should be investigated in detail in further research. 



 Horizontal convection of an inclined viscous fluid flow 59 

 

Heating non-uniformities represent a wider class of problems which has been studied on a 
case by case basis. The temperature non-uniformities on the lower plate create horizontal 
and vertical temperature gradients which result in horizontal density variations that create 
motions frequently referred to as horizontal convection. The heating creates horizontal 
temperature gradients which lead to the formation of vertical and horizontal temperature 
gradients that in turn lead to the formation of the vertical and horizontal pressure gradient 
that drives the fluid motion regardless of the intensity of heating. When the hot spots 
overlap either with the fluid flow pattern tips or with its bottoms, convection assumes the 
form of pairs of counter-rotating rolls whose size is dictated by the heating wavelengths. 
The formation of a net horizontal flow, referred to as thermal drift, is observed for all other 
relative positions of the hot spots and the fluid temperature peaks. Both periodic heating 
and periodic fluid flow pattern are required for formation of this drift, which can be directed 
in the positive as well as in the negative horizontal directions depending on the phase 
difference fp between the heating and the fluid flow patterns. 

In our case depending on the negative or positive values of the inclination angle , 
whether the component of gravitational acceleration in the direction of the x-axis is positive 
or negative (thermal drift is a very strong function of the phase difference), the largest 
thermal drift occurs for inclination angle 10 at the instant of time t5/8 for Rap=30. 
The combined effect of buoyancy-induced shear flow leads to the creation of convection 
rolls and gravity-induced shear flow leads to the creation of thermal drift with magnitude 
depending on the angle of inclination of plates  and the gravity component in the direction 
of the x-axis. The flow topology is locked in with the heating pattern but only for small 
convection intensities max, for low Rayleigh numbers and the angle of inclination . If 
0 the fluid flow pattern starts sliding in the direction of the gravity component parallel 
to the x-axis, for the case of  it is in the negative and for  it is in the positive direction 
of the x-axis. Fig. 2d displays the fluid flow pattern for the phase shift fp/10, with the 
flow topology consisting of sets of rolls separated from each other by a stream tube 
weaving up and down and carrying fluid in the negative x-direction, for our case . We 
have seen that the most intense convection and the largest thermal drift occur for 10 at 
the instant of time t5/8 for Rap=30. Their intensity increases proportionally to the 
uniform heating intensity Rauni and the periodic heating intensity Rap. It has been shown 
that periodic heating and an inclination angle  are required for the thermal drift formation, 
which is important for the horizontal flow control in micro-devices. The presence of 
heating non-uniformities is expected to affect the transition conditions for secondary 
convection as it has been recently investigated [28, 29]. 
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