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Abstract. Research in the field of heat conduction has a broad application in various 

industrial sectors and engineering disciplines. One of the key aspects of this research is 

the analysis of thermal characteristics of materials, considering that conduction directly 

influences the thermal comfort within a structure. The proper distribution of temperature 

within a wall directly reflects the properties of the material itself and provides 

predictions of thermal comfort. 

This study is expected to present specific data about the temperature profile within a 

multi-layered wall during a certain time step, using both analytical and finite difference 

methods. Based on the obtained results, an evaluation of the error between the analytical 

and numerical methods will be presented. The described multi-layered wall represents 

the external wall of an existing building in Niš, Serbia. 

Key words: Temperature Profile, Analytical Method, Finite Difference Method, 

Conduction, Error Analysis 

1. INTRODUCTION 

In many studies, models have been developed to track the transient thermal behavior of 
walls during the summer, considering factors such as wall orientation and decrement 
factors, among others. However, this research encounters a challenge because the method 
has not been developed for multi-layered walls [1]. A solution based on the fractional 
calculus for a one-dimensional transient heat conduction problem has been developed to 
contribute to understanding unstable heat transfer in a finite domain. This approximation 
captures the effect of variable order derivatives in heat transfer. First, the case of one-
dimensional unstable heat diffusion in a finite domain is presented, where Neumann and 
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Dirichlet boundary conditions are imposed on the left and right sides of the rod, 
respectively [8]. 

Numerical analysis of such studies is mainly performed using the Gauss-Seidel and 
TDMA methods, showing good agreement with the analytical method with an error of less 
than 1% for both methods [3]. A detailed CFD procedure can be found in Versteeg and 
Malalasekera's work [12] or Patankar's work [15, 16]. However, in most studies, the 
description of temperature distribution over time steps primarily focuses on solutions 
obtained numerically, while the analytical method [13] and the estimation of errors 
between these two methods are neglected. 

Temperature profiles can be primarily solved through partial differential equations for 
any cross-section and for any initial and boundary conditions [11, 12]. The problem 
addressed in this study is based on a multi-layered flat wall, considering 1D conduction 
with a constant thermal conductivity coefficient. The problem is to investigate the 
characteristic summer day with concentrated solar radiation on the wall, where there is a 
12-hour period with a temperature of 50°C. After the initial temperature distribution, 
temperatures at the boundaries change with each other. Works that have historically dealt 
extensively with such issues are related to the rapid temperature changes of the space 
shuttle wall upon reentry into Earth's atmosphere. Although the structure of the space 
shuttle wall is much more complex and involves much higher temperatures, the goal and 
principle of solving the problem with lower temperatures remain the same [17]. In NASA's 
study on thermal stress analysis, the significance of solving the problem using the finite 
difference method is demonstrated, along with the impact of sudden temperature changes 
on the space shuttle wall [18]. If we consider this problem with lower temperatures and the 
thermal stress on the wall discussed in this study, over a longer time period, significant 
changes in thermal conductivity coefficients can also be expected, which is of great 
importance for examining energy efficiency in construction. On the other hand, this area 
of research introduces the concept of energy consumption into the consideration of other 
research areas, particularly concerning the emissions of harmful gases during energy 
production for buildings with multilayered external walls. 

In its October 2018 release, The Intergovernmental Panel on Climate Change (IPCC) 
focused on the impacts of global warming at 1.5°C above pre-industrial levels and the 
corresponding global greenhouse gas emission pathways. Grounded in scientific evidence, 
this report highlighted that human-induced global warming had already reached 1°C above 
pre-industrial levels and continued to increase by about 0.2°C per decade. Without 
intensified international efforts to combat climate change, the global average temperature 
could approach a 2°C increase shortly after 2060, with a continued upward trend thereafter. 
Such unchecked climate change has the potential to turn Earth into a "hothouse," increasing 
the likelihood of irreversible and widespread climate effects. The IPCC report confirms 
that approximately 4% of the global land area is expected to transition from one ecosystem 
type to another at a 1°C global warming, a figure that rises to 13% at a 2°C temperature 
shift [19]. 

2. MODEL 

2.1 Physical model 

The following table provides values for the density of wall materials, thermal 
capacitance, and thermal conductivity coefficients.  
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Table 1. Values of required coefficients 

The thermal conductivity coefficient is 𝜆 = 0.07252 
𝑊

𝑚𝐾
, the thermal capacitance of the 

wall is 𝑐 = 892.6
J

kgK
 and the density of the wall material is 𝜌 = 947.2

𝑚3

𝑘𝑔
 . 

The thermal diffusivity coefficient is defined by the expression [15]: 

  𝑎 =
𝜆

𝜌∙𝑐
= 8.57714 ∙ 10−8 𝑚2

𝑠
  (1) 

The initial conditions that prevail and are considered constant are as follows: in the first 
scenario, the temperature on the external side of the wall is 50°C, while the temperature on 
the internal side is 20°C. After the temperature distribution, a sudden change in temperature 
occurs on both the external and internal sides of the wall. In the new scenario, the 
temperature on the internal side of the wall is 50°C, while on the external side it is 20°C. 
The time step is 1 hour over a 12-hour period, and the spatial step is 50 mm out of a wall 
thickness of 500 mm (0.5 m). 

2.2 Mathematical model 

The temperature profile within the wall is typically represented using a partial 
differential equation that defines the 1D conduction heat transfer through a flat wall at an 
initial moment, and it takes the form [5]: 

  𝑎 𝑑
2

𝑇

𝑑𝑥2 = 0  (2) 

The partial differential equation for any given moment is defined by the expression [5]: 

  𝑑𝑇

𝑑𝜏
= 𝑎

𝑑2𝑇

𝑑𝑥2 (3) 

where τ is the time for which heat transfer is taking place.  
The boundary conditions obtained from the physical model are as follows: 

  𝑇(𝑥, 0) = 𝑓(𝑥) (4) 

  𝑇(0, 𝑡1) = 293.15°𝐾 (20°𝐶) (5) 

  𝑇(𝐿, 𝑡1) = 323.15°𝐾 (50°𝐶) (6) 

The temperature distribution is as follows:  

Table 2. The temperature distribution before the sudden change at the boundaries 

 Materials δ (cm) λ (W/mK) ρ (kg/m³) c (kJ/kgK) 
1. Acrylic plast finishing plaster  0.5 1.4 2100 1050 
2. Adhesive and mesh 0.5 0.7 1900 1050 
3. Mineral wool 22 0.034 80 840 
4. Block 25 0.64 1600 920 
5. Extension mortar 2 0.87 1800 1050 
 TOTAl 50 0.07252 947.2 892.6 

m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
°K 323.15 320.15 317.15 314.15 311.15 308.15 305.15 302.15 299.15 296.15 293.15 
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The boundary conditions state that after the temperature distribution, the temperature on 
the inner side transitions to the outer side and vice versa: 

Table 3. The temperature distribution after the sudden change at the boundaries 

 
Fig. 1 The temperature distribution at the initial moment 

Fig. 1 represents the temperature distribution in a multilayered wall before the temperature 
changes at the boundaries, providing a clearer insight when considering both cases 
simultaneously.  

3. METHODS 

3.1 Analytical method 

To obtain an analytical solution, one needs to start by setting up equations for the already 
distributed temperature within the wall, with the requirement that these equations must 
account for temperature changes at the boundaries. 
Starting from the partial differential Eq. (2) for the initial moment (t=0), we have that the 
equations describing the temperature profile are as follows, where T(0,0)=293.15 °K 
(20°C). Therefore, the temperature distribution is defined by a function that encompasses 
the following three equations: 

𝑇 = 293.15 + 540 ∙ 𝑥 (°𝐾)  0 ≤ 𝑥 ≤ 0.05 

(7) 𝑇 = 323.15 − 60 ∙ 𝑥 (°𝐾)  0.05 ≤ 𝑥 < 0.45 

𝑇 = 53.15 + 540 ∙ 𝑥 (°𝐾) 0.45 ≤ 𝑥 ≤ 0.5 

Considering that we have a 12-hour period, the partial differential equation for any given 
moment takes the form from Eq. (3). To facilitate data manipulation, Eq. (3) can be written 
in a simplified form as (u=T) [14]: 

  𝑢𝑡 = 𝑎 ∙ 𝑢𝑥𝑥 (8) 

  𝑢(0,0) = 20°𝐶 = 𝑇1 (9) 
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  𝑢(𝐿, 0) = 50°𝐶 = 𝑇2 (10)  

  0 < 𝑥 < 0.5       ;        1 ≤ 𝑡 ≤ 12 (11) 

By separating variables, it is not possible to solve this problem directly due to the non-
homogeneity of the system: 

  𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝑤(𝑥, 𝑡) (12) 

  𝑣(𝑥, 𝑡) = 𝑇1 +
(𝑇2−𝑇1)𝑥

𝐿
 (13) 

  𝑤𝑡 = 𝑎 ∙ 𝑤𝑥𝑥 (14) 

the new constraints take the following form: 

   
                        𝑤(0, 𝑡) = 0;            𝑤(𝐿, 𝑡) = 0;            𝑤(𝑥, 0) = 𝑓(𝑥) − 𝑣(𝑥) (15) 

Now this problem is for a homogeneous system and can be solved by separating variables. 
By doing this, we obtain the following solution: 

  𝑤(𝑥, 𝑡) = ∑ 𝐴𝑛𝑒
−

𝑎 𝑛2𝜋2𝑡

𝐿2∞
𝑛=1 ∙ sin (

𝑛𝜋𝑥

𝐿
) (16) 

By applying the constraints (17), we obtain the coefficient 𝐴𝑛: 

  𝐴𝑛 =
2

𝐿
∫ (𝑓(𝑥) − 𝑣(𝑥)) sin (

𝑛𝜋𝑥

𝐿
)  𝑑𝑥

𝐿

0
 (17) 

 

      𝑤(𝑥, 𝑡) =
2

𝐿
∑ [∫ (𝑓(𝑥) − 𝑣(𝑥)) sin (

𝑛𝜋𝑥

𝐿
)  𝑑𝑥

𝐿

0
] ∙ 𝑒

−
𝑎 𝑛2𝜋2𝑡

𝐿2∞
𝑛=1 ∙ sin (

𝑛𝜋𝑥

𝐿
) (18) 

By substituting the solution (19) back into Eq. (14), the final analytical solution to the heat 
conduction problem is obtained: 

𝑢(𝑥, 𝑡) = 𝑇1 +
(𝑇2−𝑇1)𝑥

𝐿
+

2

𝐿
∑ [∫ (𝑓(𝑥) − 𝑣(𝑥)) sin (

𝑛𝜋𝑥

𝐿
)  𝑑𝑥

𝐿

0
] ∙ 𝑒

−
𝑎 𝑛2𝜋2𝑡

𝐿2∞
𝑛=1 ∙ sin (

𝑛𝜋𝑥

𝐿
)

 (19) 

3.2 Numerical method 

3.2.1 Finite difference method 

Despite the simplicity of representing partial differential equations using finite 
differences, a significant amount of experience and knowledge is required to select an 
appropriate finite difference method for a specific problem. Factors such as the type of 
partial differential equations, the number of physical dimensions, the type of coordinate 
system, whether the fundamental equations and boundary conditions are linear or 
nonlinear, and whether the problem is in a steady-state or transient state, are some of the 
factors that influence the choice of a numerical scheme from the many available methods. 
Adapting a numerical method to a specific problem is an important first step in numerical 
solution using finite difference methods. Therefore, one should classify the partial 
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differential equations encountered in the mathematical formulation of heat, mass, and 
momentum transfer problems, and consider the physical significance of such classification 
in relation to numerical problem-solving [12]. 
This method is based on replacing derivatives with finite difference quotients. First, a finite 
number of points within the given interval are chosen, forming a grid. These chosen points 
are called nodes of the grid, and if the nodes are evenly spaced, the grid is uniform and 
defined by a step size [15]. 
As we represent the given problem by Eq. (3) with specified boundary conditions, the 
method is expressed through a partial differential equation in the following form [5]: 

  
𝑈𝑖,𝑗+1−𝑈𝑖,𝑗

𝛥𝑡𝑗
= 𝑎 ∙ (

𝑈𝑖−1,𝑗+1−2𝑈𝑖,𝑗+1+𝑈𝑖+1,𝑗+1

𝛥𝑥2 ) (20) 

By rearranging the equation, we obtain the following form: 

  𝑈𝑖,𝑗 = 𝑟 ∙ 𝑈𝑖−1,𝑗+1 + (1 − 2𝑟) ∙ 𝑈𝑖,𝑗+1 + 𝑟 ∙ 𝑈𝑖+1,𝑗+1 (21) 

where 𝑟 is: 

𝑟 = 𝑎 ∙
𝛥𝑡𝑗

𝛥𝑥2
 

The final form takes the following shape: 

  

Fig. 2 The temperature distribution 

Fig. 2 represents the application of the finite difference method with specified nodes 
(temperatures). 

 4. RESULTS AND DISCUSSION 

By using calculation software (Excel and Wolfram Mathematica), the following results are 
obtained.  
For the analytical method:  

Table 4. The temperature distribution after the sudden change at the boundaries 
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h/m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0 293.15 320.15 317.15 314.15 311.15 308.15 305.15 302.15 299.15 296.15 323.15 
1 293.15 314.15 317.02 314.15 311.15 308.15 305.15 302.15 299.28 302.16 323.15 
2 293.15 311.66 316.38 314.13 311.15 308.15 305.15 302.16 299.92 304.63 323.15 
3 293.15 309.84 315.53 314.05 311.15 308.15 305.15 302.25 300.77 306.46 323.15 
4 293.15 308.4 314.63 313.89 311.14 308.15 305.16 302.41 301.67 307.91 323.15 
5 293.15 307.22 313.75 313.65 311.11 308.15 305.19 302.65 302.55 309.08 323.15 
6 293.15 306.24 312.9 313.35 311.06 308.15 305.24 302.95 303.4 310.06 323.15 
7 293.15 305.4 312.11 313.01 310.99 308.15 305.31 303.29 304.19 310.9 323.15 
8 293.15 304.7 311.37 312.65 310.89 308.15 305.41 303.65 304.93 311.61 323.15 
9 293.15 304.06 310.68 312.27 310.77 308.15 305.53 304.03 305.62 312.2 323.15 
10 293.15 303.51 310.04 311.88 310.63 308.15 305.67 304.42 306.26 312.8 323.15 
11 293.15 303.02 309.44 311.49 310.48 308.15 305.82 304.81 306.86 313.28 323.15 
12 293.15 302.57 308.88 311.1 310.31 308.15 305.99 305.2 307.42 313.73 323.15 

By using the formula obtained through the analytical method with the given conditions, we 
obtain the temperature profile for each point separately during the specified interval. From 
the table, we can deduce that the most significant temperature changes are observed at the 
first and last steps, which is due to the substantial initial difference. On the other hand, 
there are no deviations in the middle of the wall. 

 

Fig. 3 Temperature distribution per step 

From Fig. 3, the temperature stabilization can be accurately observed, especially after 12 
hours. 
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Fig. 4 Temperature profile per step 

For the finite difference method, the results obtained are very close to the results of the 
analytical method, as can be observed in the following table. 

Table 5. Distribution of temperature after a sudden change at the boundaries 

h/m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0 293.15 320.15 317.15 314.15 311.15 308.15 305.15 302.15 299.15 296.15 323.15 
1 293.15 316.44 317.15 314.15 311.15 308.15 305.15 302.15 299.15 299.86 323.15 
2 293.15 313.65 316.69 314.15 311.15 308.15 305.15 302.15 299.61 302.65 323.15 
3 293.15 311.5 316 314.09 311.15 308.15 305.15 302.21 300.3 304.8 323.15 
4 293.15 309.79 315.21 313.97 311.14 308.15 305.16 302.33 301.09 306.51 323.15 
5 293.15 308.4 314.39 313.77 311.12 308.15 305.18 302.53 301.91 307.9 323.15 
6 293.15 307.26 313.57 313.52 311.08 308.15 305.22 302.78 302.73 309.04 323.15 
7 293.15 306.3 312.79 313.23 311.02 308.15 305.28 303.07 303.51 310 323.15 
8 293.15 305.47 312.04 312.9 310.94 308.15 305.36 303.4 304.26 310.83 323.15 
9 293.15 304.76 311.33 312.55 310.84 308.15 305.46 303.75 304.97 311.54 323.15 
10 293.15 304.14 310.67 312.19 310.72 308.15 305.58 304.11 305.63 312.16 323.15 
11 293.15 303.59 310.05 311.82 310.58 308.15 305.72 304.48 306.25 312.71 323.15 
12 293.15 303.1 309.47 311.45 310.43 308.15 305.87 304.85 306.83 313.2 323.15 
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Fig. 5 Temperature distribution per step 

 
Fig. 6 Temperature profile per step 
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Fig. 7 Temperature difference between analytical and finite difference method 

In Fig. 7, temperatures are depicted at one-hour intervals, with each line representing these 
time periods. This figure illustrates the temperature difference between two different 
methods. It can be observed that the maximum temperature difference between these two 
methods was 2.3 °K (Kelvin). 

Table 6. Relative error of the finite difference method in relation to the analytical method 
in percentages 

h/m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0.7283 0.0413 0 0 0 0 0 0.0437 0.7685 0 
2 0 0.634 0.0976 0.0047 0 0 0 0.0049 0.1032 0.657 0 
3 0 0.5333 0.1494 0.0125 0.0006 0 0.0006 0.013 0.1572 0.545 0 
4 0 0.4505 0.1839 0.0244 0.0016 0 0.0016 0.0253 0.1925 0.4553 0 
5 0 0.3847 0.2036 0.0394 0.0035 0 0.0036 0.0409 0.212 0.3853 0 
6 0 0.3329 0.213 0.0544 0.0067 0 0.0069 0.0564 0.2206 0.3309 0 
7 0 0.2913 0.2156 0.0683 0.0109 0 0.0111 0.0706 0.2222 0.2878 0 
8 0 0.2577 0.2138 0.0807 0.0162 0 0.0165 0.0832 0.2193 0.2532 0 
9 0 0.2303 0.2099 0.0909 0.0219 0 0.0223 0.0936 0.2143 0.2253 0 

10 0 0.2076 0.2041 0.0994 0.0277 0 0.0282 0.102 0.2075 0.2023 0 
11 0 0.1887 0.1976 0.1059 0.0335 0 0.034 0.1084 0.2 0.1832 0 
12 0 0.1729 0.1908 0.1108 0.0389 0 0.0394 0.1132 0.1924 0.1673 0 

This analysis of temperature differences can be of significant importance in the context of 
thermoenergetics and energy management, as it can indicate the efficiency or accuracy of 
various methods. 
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In Table 6, relative errors are provided for each node individually within the network. From 
the given table, it can be concluded that there are no significant temperature differences 
between the methods. In addition, the percentage of error is within an acceptable range. 
Therefore, both methods can be used for the given problem or similar ones. 
A one-dimensional mathematical model of a multi-layered wall, processed using the 
analytical method and the finite difference method, is formulated with the intention of 
analyzing the unsteady heat transfer process during the maintenance of constant 
temperatures at the ends of the wall. From the study of the obtained results, it can be 
primarily concluded that there are no significant discrepancies in temperatures between 
different methods. Another conclusion indicates that initially there is a temperature profile 
in the shape of the letter Z, meaning that sudden temperature drops and rises occur from 
the initial moment up to 12 hours, after which they gradually transform into an S shape 
profile. This transition is clearly manifested in the visual representation shown in Fig. 6. 
Fig. 7 illustrates how the temperature profile for each individual step, after the initial 
moment, gradually stabilizes. 
The obtained analytical equation within the mathematical model, where the boundaries are 
maintained at constant temperatures, can serve as a foundation for calculating various 
temperatures within structures, as well as for analyzing different wall compositions. This 
derived equation opens the possibility for developing control systems that could be applied 
in a broader spectrum of building systems. 
This paper may not necessarily serve for research in the field of heat transfer but can have 
much broader applications across various domains. Such an analysis also provides the 
opportunity for further work on temperature distribution, which can offer better insights 
into the behavior of building envelopes in terms of energy consumption required for HVAC 
systems. From the field of construction materials, certain adjustments can also be made in 
further research, as well as the study of the effects of moisture within materials during rapid 
temperature changes. This extends to areas such as environmental protection, circular 
economy, construction material production, and more. 

5. CONCLUSION 

This study has presented a comprehensive analysis of unsteady heat transfer processes 
in a multi-layered wall using both analytical and finite difference methods. Several key 
findings can be highlighted: 
1. Temperature Profiles: The temperature profiles obtained through both methods reveal 

significant insights. Initially, there is a Z-shaped profile characterized by abrupt 
temperature changes, followed by a gradual transformation into an S-shaped profile 
after approximately 12 hours. This transition is visually evident in Fig. 5, and Fig. 6 
illustrates the gradual stabilization of temperature profiles. 

2. Stabilization: Fig. 3 demonstrates that temperature stabilization becomes more 
pronounced, especially after 12 hours, suggesting that the wall reaches a thermal 
equilibrium over time. 

3. Method Comparison: The results obtained from the finite difference method closely 
match those from the analytical method, as indicated in the accompanying table. This 
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indicates the reliability and accuracy of both approaches in modeling the heat transfer 
process. 

4. Temperature Difference Analysis: Fig. 7 provides a comparison of temperature 
differences between the two methods, showing that the maximum temperature 
difference between them is 2.3 °K. This analysis is crucial for evaluating the efficiency 
and accuracy of the methods, particularly in the context of thermoenergetics and 
energy management. 

5. Utility of Analytical Equation: The analytical equation derived in this study, which 
considers constant temperature boundaries, has practical applications in calculating 
temperatures within various structures and analyzing different wall compositions. This 
equation can serve as a foundation for developing control systems applicable to a 
broader range of building systems. 

6. Method Selection: Finally, based on the relative errors provided in Table 6, it is 
concluded that there are no significant temperature differences between the methods. 
Therefore, both the analytical and finite difference methods can be confidently used 
for solving similar problems. 

In summary, this research contributes valuable insights into unsteady heat transfer 
processes within multi-layered walls and offers a reliable analytical tool for temperature 
calculations in diverse structural scenarios, emphasizing its potential impact on energy-
efficient building systems and thermal management. 
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