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Abstract. This paper is dedicated to an overview of the existing approaches and their 
assumptions in the mathematical modeling of bone tissue and will thus necessarily 
emphasize future paths of understanding and communicating in this field of science. The 
understanding of the bone tissue processes, and the possibility of their mathematical 
modeling is important for several different directions of practical demands, all 
encompassed in the development of medicine and technology. One aspect of bone tissue 
modeling is directed towards the bone medicine field that solves acute and chronic 
problems as computer-assisted orthopedic surgery which requires real-time simulation, 
disease treatment and improvement of the quality of life. The other aspect is directed 
towards material science and tissue engineering. On the one hand, we have mathematics 
and mechanics with their approximations and assumptions and, on the other, we have 
very complex practical requirements for real-time simulations and in-silico experiments. 
To meet these two complex fields with efficiency, it is necessary to further explore and 
better understand all the conditions that influence the feasibility and accuracy of the 
mathematical models for bone tissue. The first step in this enticing field is to make an 
overview by categorizing the models into distinct categories from the mathematical 
attitude to the practical demands. Different practical demands cause different 
mathematical approaches to modeling. This paper presents, as clearly as possible, the 
collection of models and approaches according to these practical requirements. Since 
mathematical methods have their own constraints, we first present the description of 
mathematical modeling and its challenges and obstacles in biology. As a practical 
example, the bone cell population model for mechanotransduction of external periodic 
signals is presented. 
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1. INTRODUCTION 

Close to a hundred and sixty thousand papers are related to “bone tissue modeling” on 
the Springer Link, with over a hundred and forty thousand in the last fifteen years. Most of 
them are from the field of medicine, over a hundred thousand, the next are fields of bio-
medical science and life science, engineering, with over ten thousand papers, and 
chemistry. When searching for the key phrase “mathematical models of bone tissue” about 
nine thousand papers are found, which fits the number published in engineering disciplines. 
The number is rapidly growing, for instance, in the last year about thirteen thousand papers 
were published. This is a result of increasing demands but also of technical achievements 
in interdisciplinary research. Some reasons for such an explosion of interest in the field 
may be also found in the following facts: 
- the explosion of data-rich information sets, due to the genomics revolution, which are 

difficult to understand without the use of analytical tools, 
- the recent development of mathematical tools such as chaos or networks theory to help 

understand complex, non-linear mechanisms and interactions in tissue processes, 
- an increase in computing power which enables calculations and simulations to be 

performed that were not previously possible and 
- an increasing interest for in-silico experimentation due to ethical considerations, risk, 

unreliability, and other complications involved in human and animal research by in-
vivo and in-vitro experiments. 

The similar reasoning is given by Podshivalov et al. [1] who state that a significant 
breakthrough in bone research took place at the end of the 20th century. This breakthrough 
was made possible by the development of high-resolution medical scanning technology, of 
computational hardware that is constantly improving and of state-of-the-art computational 
methods and algorithms. Using these developments, researchers have begun to strive for a 
better understanding of bone structure and mechanics and to apply this knowledge in 
designing new medical treatment and procedures, resulting in a constant increase in high 
quality research in this scientific area [1].  

In the present time, when techniques and technology gallop tremendously fast, we still 
have human operators on devices suffering from different bone pains. This is a principal 
reason, among others such as aging and degeneration of bone tissue for an increasingly 
aging population, for tremendous interest in the problems with bone. A small but a vital 
part of general health is the musculoskeletal health. Musculoskeletal disorders already 
account for nearly half of all absences from work and sixty percent of permanent work 
incapacity in Europe. Therefore, effective and application-related research into preventive, 
prophylactic and regenerative therapies is important. 

Scientific understanding of complex bone processes has recently benefited from 
mathematical and computational modeling. Classical biological studies are focused on 
observation and experimentation. However, mathematical modeling and computer 
simulations can provide useful guidance and insightful interpretations for experimental 
studies, orthopedic surgeries, embedding scaffolds and implants, effect of drugs in patient 
treatment and so on. Mathematical modeling can also be used to characterize complex bone 
phenomena, from intercellular signaling to cell division, proliferation, migration and even 
mutation, from bone remodeling to healing, from tumor growth to cancer metastasis, from 
osteoarthritis to osteoporosis treatment or else. Mathematics and mathematical modeling 
can assist in formulating hypotheses and finding the experiments that may differentiate 

https://en.wikipedia.org/wiki/Simulation
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between different mechanisms, can help in determining which of the assumed mechanisms 
is likely to be the most important for the observed effects. Finally, and perhaps most 
importantly, mathematical modeling is a tool for synthesis - the process of combining 
separate elements in order to form a coherent whole - a tool of inductive reasoning, 
allowing reconstruction of the bone function as an organ based on the acquired knowledge 
of elementary processes [2].  

In many cases, the quality of a scientific field depends on how well the developed 
mathematical models agree with the results of repeatable experiments. A lack of agreement 
between mathematical models and experimental measurements often leads to important 
advances as better theories are developed. In the case of bone tissue modeling and structural 
mathematical modeling both fields should benefit. Bone tissue modeling would gain more 
realistic and accurate models ready to be used for the prediction of treatment and 
operations, and mathematics would witness the improvement of tools that deal with many 
different input and output parameters and variables. Also, the results from joining both 
directions should provide material science with a new path for understanding, producing, 
simulating and predicting the features of the new generation of biomimetic materials. 

This paper outlines how mathematical models can help to improve current 
understanding of bone biology and discusses examples where mathematical modeling was 
used to provide new insights into important questions of bone biology. The main concepts 
of mathematical modeling on different scales are presented first. They are embedded 
afterwards in different scales of practical demands and their last five-year-results are 
elucidated. At the end, the view of the state of the art in this field and the direction of future 
deliberations are presented. The selection of references provided herein was made to 
present the very contemporary tendencies of application of mathematical and 
bioengineering bone modeling, but readers should always bear in mind that the field is 
abundant and that every scientific school has its own “best solution”. The tendency of this 
review was not to favor some of them, but instead to highlight the modern trends, problems, 
and certain interesting solutions. Of course, there are so many published studies worth 
mentioning that are not presented here, because of time and space restrictions, and the 
interested readers are only versed in the overall domains, thus it remains that they should 
form an opinion and judgment of their own. 

2. MATHEMATICAL MODELING 

Using the formulation of a mathematical model as a self-contained set of formulas 
and/or equations based on an approximate quantitative description of real phenomena and 
created in the hope that the behavior it predicts will be consistent with the real behavior on 
which it is based [3], one can notice that the emphasis is on the uncertainty in the 
connection between the mathematical model and the real-world setting to which it is 
applied. This emphasis means that modeling requires the theoretical science skills of 
approximation and validation, and it changes the focus of the mathematical skills from 
proof and solution to characterization (understanding the broad range of possible 
behaviors) and simulation (visualizing the behavior in specific examples). The thinking 
one needs for mathematical modeling is therefore somewhat different from the thinking 
associated with mathematics per se and more like the thinking associated with theoretical 
science of interdisciplinary fields. Mathematical solutions provide a wide range of results 
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but only the practical data could validate which of those results are acceptable. The 
imperative is to understand the problem as a whole and to validate the model results. At 
best, a mathematical model can be valid, in the sense of “giving meaningful results under 
a given set of real-world circumstances” [3]. There are almost certainly quantitative 
differences between the model and real-world empirical results, and there may be important 
qualitative differences as well. If the differences are small enough in the given setting, we 
judge the model to be valid and use it with confidence. The model may work for somewhat 
different settings as well, but its validity should be checked for the new setting. When the 
validation is not satisfactory, one must revise the model and try again. Model development 
is the most critical step in mathematical modeling, generally requiring 50–70% of the 
project time. 

All the models used in biology represent a significant simplification of the reality and 
depend on specific underlying assumptions. Sometimes it is useful to incorporate 
subjective information into a mathematical model. This can be done based on intuition, 
experience, or expert opinion, or based on convenience of mathematical form. In general, 
model complexity involves a trade-off between simplicity and accuracy of the model. 
Occam's razor is a principle particularly relevant to modeling; the essential idea being that 
among models with roughly equal predictive power, the simplest one is the most desirable. 
While added complexity usually improves the realism of a model, it can make the model 
difficult to understand and analyze, and can also pose computational problems, including 
numerical instability. Thus, an experienced researcher with expertise in an interdisciplinary 
field should possibly create a more complex model and the trick would be to propose a 
simplification which will make the processes easier to understand but still attempting to 
imitate it. 

When starting modelling we accept a set of specific predictions of how the biological 
system might behave under certain externally implied conditions. In fact, we make the 
appropriate assumptions and hypotheses which are the set of physical/chemical/biological 
processes selected and hypothesized to be critical in the studied phenomenon. Derivation 
of the hypothesis requires the complexity of real phenomena (biological system) to be 
reduced and a conceptual (biological) model of a process to be built, which encompasses 
some logical relationships between the perceived key elements of the whole. Specific 
hypotheses concerning the elements of the conceptual model can be tested using specific 
experimental conditions. The experimental outcomes agree or disagree with the stated 
hypothesis, allowing for the refinement of a conceptual model. In that way, a large 
collection of individual observations on different aspects of bone regulation is generated. 
Essentially, these observations can be viewed as single pieces of a large puzzle, the systems 
behavior of bone. However, without having the overall picture in mind (the conceptual 
model), these individual pieces cannot be put together in a systematic way. The following 
step is to translate the accepted biological model into a mathematical one. During this stage, 
the biological model should provide specificity and precision, which represent the first 
advantage of using mathematical modeling in biological research - it forces the 
development of a deeper understanding of biological processes, and consequently more 
precise formulation of hypotheses. Next, it is necessary to choose the variables and to 
establish rules between them, after which the estimation of the numerical values of 
parameters is needed. In the process of modeling the experimental data value of some 
parameters may be unavailable at the time, so the researcher can estimate the likely range 
of values from the available experimental data or similar processes or can hypothesize the 
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values relative to other known values. Importantly, even if absolutely no data exist for the 
required parameters, and so arbitrary numbers have to be assigned, an advantage of model 
analysis is that it allows assessment of whether and at which values certain parameters are 
important for the overall behavior of the model. Such insight can stimulate further 
experimental studies to measure the most important parameters or can advise that the 
process is unlikely to be important if the current conceptual model is correct. Thus, the 
second advantage of mathematical modeling is the ability to identify the important 
parameters, i.e., those capable of introducing significant changes to the overall behavior of 
the system.  

Mathematical models can be used for different purposes, and the aim of the model plays 
a large role in determining the type of analysis and the criteria for validation. They describe 
a system by a set of variables and a set of equations that establish relationships between 
the variables. Namely, the input data (potential reasons for variation) as the independent 
variables are functionally related with outputs or outcomes, whose variation is being 
studied, as the dependent variables. A model of a biological system – a biological model is 
converted into a system of equations, although the word 'model' is often used 
synonymously with the system of corresponding equations yet then it stands for a 
mathematical model. The solution of the equations, by either analytical or numerical 
means, should describe how the biological system behaves either over time or at 
equilibrium. There are many different types of equations and the type of behavior that can 
occur is dependent on both the model and the equations used. As aforementioned, the 
model often makes assumptions about the system, but the equations may also make 
assumptions about the nature of what may occur.  

In terms of model limitations, it is also important to realize that most problems dealt 
within bone biology are highly nonlinear and therefore exhibit different types of non-
obvious behavior, such as point attractors (for systems reaching a stable equilibrium), 
periodic attractors (for systems reaching an oscillatory equilibrium), strange attractors (for 
systems exhibiting chaotic behavior) and bifurcation points (where a small change in model 
parameters leads to a large, qualitative change in system behavior). Studying complex, non-
linear systems often requires advanced analytical and numerical calculation tools, which 
have limitations and assumptions of their own. Therefore, the success of mathematical 
modeling strongly depends on the collaborative efforts of biologists and mathematicians 
(physicists, engineers) engaged in the project. 

2.1. Analytical approaches and their practical scales 

From a biological perspective bone is present over many biological scales from genetic, 
intra-cellular, cellular, extra-cellular, tissue, organ and finally to the whole organism. This 
requires a much deeper understanding of complex processes, feedback mechanisms and 
“multi-scale’’ phenomena. In mathematical terms, it requires the study of highly nonlinear 
integrated systems. The biological system characterization is based on the identification of 
three natural scales; therefore, we distinguish between processes at the intracellular, 
cellular and tissue scale. Different mathematical techniques and structures correspond to 
these scales: 

The intracellular scale: In response to changes in the external or internal cellular 
environment, the expression of specific genes and consequently protein synthesis may 
change. Cascades of biochemical reactions that lead to signal transduction from receptors 
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located on the cell surface to the cell nucleus are called signaling pathways. These signaling 
pathways constitute natural regulatory systems that should ensure, on the one hand, cell 
resistance to random changes in its condition, and on the other, a proper response to 
external changes. Models at this sub-cellular scale are most often constructed using coupled 
systems of ordinary differential equations or Boolean networks. 

The cellular scale: At the cellular level, the key processes that are modeled are division, 
differentiation, apoptosis and interactions between cells. These processes are regulated via 
signaling pathways. Regulatory proteins, whose production is triggered by signaling 
pathways, initiate or modify the processes of cell division and death. In turn, cell 
differentiation, both normal and pathological, influences the signaling pathway dynamics, 
which leads to subsequent changes at the cellular level. Considering the links between 
cellular models and the models described above at the sub-cellular scale is necessary in 
order to describe how cells function. Multi-cellular systems, i.e. models at the cellular 
scale, are usually developed in terms of nonlinear integro-differential equations (of the 
Boltzman type), the components of the mathematical kinetic theory [4] or individual-based 
models. At this level, in the bone context, the modeling cell dynamics is the topic of several 
published papers and here we single out a few of them [5-8]. As all of them deal with the 
bone remodeling process they are described in more detail in the following section. 

The tissue scale: Anomalous processes at the cellular level have led to the development 
of structures such as osteoporotic bone, for instance, which, in turn, affect the proper 
functioning of tissue and organs. These changes are observed at the level of whole cell 
populations. This description is by its very nature phenomenological but allows for a 
qualitative understanding of the whole system depending on key parameters such as 
trabecular thickness, osteoclast resorption depth, and activation frequency (understanding 
the links between these parameters and phenomena occurring at the lower scales is 
particularly important). At this level a model includes bone micro-architecture. Tissue 
models usually involve free boundary problems and nonlinear partial differential equations. 
The choice of proper mathematical methods is usually linked to the precise biological 
questions we want to address and the type of available data. 

The organ level: At this level models are continuum based and describe the variation 
of bone's apparent density as a function of both biological and external mechanical stimuli. 

The organism level: At this level more variable parameters, e.g. age, genetics or 
hormonal status of the organism, should be included in the description, thus a statistics 
method should be applied. 

Descriptions on different scales seem to be deeply justified because biological 
processes are inherently multi-scale. For instance, if we consider processes such as 
diseases, we find that they are present over many biological scales. First symptoms are 
almost always observed at the clinical (macroscopic) level, but if we look more closely at 
the origins of those diseases, it is easy to see that a pathological process often begins with 
intracellular alterations (microscopic level). Therefore, there is a need for new 
mathematical tools that are suitable to capture such complexities. In the field of bone 
biology, a plethora of models exist which attempt to replicate and investigate bone's 
dynamic behavior at different scales. Although informative, these models exist in isolation. 
Consequently, their interpretation is limited. There are reviews [1, 9] where authors present 
their overview of the organ-, tissue-, and cell-level models and assesses their ability to 
reflect bone’s metabolic processes reliably and introduce a framework that integrates those 
multi-scale modeling approaches. 
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The preceding subsections have enlightened the main features that a mathematical 
formalization, namely a general mathematical structure, should retain. In the analysis of 
the interplay of different scales, namely from molecules to tissues, one might expect that 
different structures might correspond to each scale. On the other hand, some correlations 
should exist between them, namely the structure at a certain scale is induced by quantities 
at the lower and/or upper scale. Therefore, the concept of multiscale should be defined as 
the passage from the lower to the higher scale. For instance, the dynamics at the scale of 
cells is induced by the dynamics at the molecular scale, the macro-scale structure of tissues 
is determined by the dynamics at the scale of cells. Finally, it is worth bringing to the 
attention of applied mathematicians a feature specific of multi-scale approaches in biology. 
All living systems evolve in time and are even subject to mutations. This aspect is well 
understood if we refer to the transfer of the dynamics at the molecular scale to that of cells. 
The modification of biological expressions at the cellular scale can induce important 
modifications in macro-scale models. As a matter of fact, macro-scale models of tissues 
evolve in time and can even undergo changes of type. It is a challenging problem but is far 
from being solved in a satisfactory way. The approach should arguably use the aforesaid 
structures as a multi-scale system of equations, namely molecular and cellular, coupled 
with the nonlinear interactions and solved by an asymptotic approach. 

At the end of this section let us refer to the future direction of the analytical approach. 
An example of a mathematical technique that can be extremely useful in describing many 
phenomena in biological systems, and that is complementary to those indicated by Ref. [4], 
are integral terms describing nonlocal interactions. For instance, nonlocal terms might be 
used to describe the phenomena of intercellular communication. Examples of such 
intercellular communication are also paracrine signaling, when a cell produces chemical 
substance signals that are secreted to the extracellular space and induce changes in nearby 
cells and autocrine signaling when a cell produces chemical messengers that bind to the 
receptors on the same cell. In both types of signaling, produced chemicals diffuse over a 
relatively small distance. Another example of a process in which nonlocal interactions are 
particularly important are the processes in which the cell size is relevant. This refers to 
models of such phenomena as chemotaxis, cell adhesion or aggregation processes. The 
nonlocal terms can describe cell size. In some cases, this also ensures that the problem is 
mathematically well-posed and that the nonlocal models may also be considered at the 
macroscopic level [10].  

2.2. Numerical approach and corresponding applicable scales 

As it was mentioned in the previous section the models describing osteoclast/osteoblast 
(OC/OB) interactions in basic multicellular units (BMUs) will be explained in more detail. 
Such models, based on nonlinear ordinary differential equations (ODEs), have been 
developed by several authors representing the power of the analytical approach [5-8], all 
specific in their own way depending on the demands from practice. These models are 
complex and elucidate one number of parameters that explain in detail the physiological 
mechanism of the bone tissue adaptation process. The obtained analytical system of 
equations needs to be solved, and because of their complexity and the lack of the analytical 
solutions numerical methods are usually used. One numerical method in wide use is the 
finite element method (FEM). Biological models that are more phenomenological and 
often require a relatively small number of parameters are relatively easy to implement in 
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FE codes. A FEM is characterized by variational formulation, a discretization strategy, one 
or more solution algorithms and post-processing procedures. Examples of variational 
formulation are the Galerkin method, the discontinuous Galerkin method, mixed methods, 
etc. A discretization strategy is understood to mean a clearly defined set of procedures that 
cover: 

(a) the creation of FE meshes,  
(b) the definition of basis functions on reference elements (shape functions) and 
(c) the mapping of reference elements onto the elements of the mesh. 
Examples of discretization strategies are the h-version, p-version, hp-version, x-FEM, 

isogeometric analysis, etc. Each discretization strategy has certain advantages and 
disadvantages. A reasonable criterion in selecting a discretization strategy is to realize 
nearly optimal performance for the broadest set of mathematical models in a model class. 
There are various numerical solution algorithms that can be classified into two broad 
categories; direct and iterative solvers. These algorithms are designed to exploit the sparsity 
of matrices that depend on the choices of variational formulation and discretization 
strategy. Post-processing procedures are designed for the extraction of the data of interest 
from the FE solution. In order to meet the requirements of solution verification, 
postprocessors need to provide for a posteriori error estimation in terms of the quantities 
of interest. When the errors of approximation are larger than what is considered acceptable, 
the discretization must be changed either by an automated adaptive process or by an action 
of the analyst. There are some very efficient postprocessors that provide for the realization 
of super-convergence. The FEMs have been initially used in the engineering problems 
calculation, but thanks to their capacity to solve very complex systems they have found 
application in bone modeling. FE has been used for more than four decades to study and 
evaluate the mechanical behavior of bone structures [11]. FE methods are attractive 
because at the macro level the bone exhibits elastic linear behavior for loads in the normal 
range of regular daily activities. In many published studies, elastic properties of bone are 
correlated to the bone real density 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚ℎ𝑡𝑡 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡⁄  in order to derive an empirical 
elasticity–density relationship, see [12]: 

 𝐸𝐸 = 𝐶𝐶𝜌𝜌𝑟𝑟𝑎𝑎𝑎𝑎(𝑟𝑟𝑎𝑎ℎ,𝑑𝑑𝑟𝑟𝑑𝑑)
𝑟𝑟       (1) 

where: 
E [GPa] Young’s modulus, 
ρapp = mht/Vtot [g/cm3] - apparent bone density 
mht - hydrated tissue mass [g], 
Vtot - total specimen volume [cm3], 
ρash = mash/Vtot [g/cm3] - ash density, 
mash - ash mass [g], 
ρdry = mdry/Vtot [g/cm3] - dry tissue density, 
mash [g] - dry tissue mass. 
Constants C and a have different values for different measurement conditions. Hydrated 

tissue mass or wet tissue mass is the specimen mass weighted in air after defatting, 
rehydration and centrifuging on a blotting paper. Dry tissue mass is the specimen mass 
weighted in air after defatting and drying at moderate temperatures. Ash mass is the 
specimen weight after defatting and heating in a furnace at a temperature of 500ºC or more 
for approximately 24 h. Reviewing Eq. (1) from different studies [12], the authors have 
found over twenty inter-study differences (different values for C and a) in the predicted 
Young’s modulus for cortical and cancellous bones, sorted them out and have presented 
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the findings tabularly. This large spread in the predicted Young’s modulus can partially be 
explained by the complexity of the experimental techniques needed to obtain the 
mechanical properties in a highly porous anisotropic material such as bone. Commonly, to 
determine the mechanical compressive properties, a trabecular bone specimen is cut out of 
a whole bone and loaded in a material testing machine. By recording the load–displacement 
curve, the stiffness can be calculated. Over time, different testing set-ups were developed 
and applied with different specimen boundary conditions (platen-technique, end-caps and 
other techniques), different specimen size and geometry (cube or cylinder) and the 
anatomical site from which the specimens were retrieved (femur, tibia, spine and other), 
all affecting the different parameters in Eq. (1). Furthermore, specimens need to be tested 
fresh or fresh frozen and in wet conditions since drying and other specimen preservation 
procedures are known to significantly alter mechanical tissue properties. However, even 
after normalization with respect to strain rate and densitometric measurement unit [12], 
they have found out that substantial inter-study differences do exist, and they can only be 
partially explained by the methodological differences between studies. The values of 
parameters C and a also depend on different directions, and have bigger values in the axial 
direction of the long bones, showing that the compressive strength for the cortical and 
trabecular femoral bone in the axial direction is better than in the transversal (lateral) 
direction [13]. 

Initially, computational models in musculoskeletal applications were based on 
idealized, simplified structures. Today, these models are typically based on image-derived 
geometries from computed tomography (CT) or magnetic resonance imaging (MRI) and 
can thus be individualized for the specific patient. Recently, FE analysis has become a 
frequently used versatile, general purpose simulation tool. Not only does it allow a detailed 
description of the mechanical load transfer in the analyzed bone, but such simulations have 
the potential to predict e.g. optimal drug treatment and distribution for individual treatment 
planning. Advances in silico experiments, modeling bone biology, can help to better 
understand the long-term risks and outcomes of many different impacts. Most usually 
FEMs are used to analyze strain and stress fields induced by external loading on bones as 
organs. Bone’s geometrical representation may be obtained from Quantitative computed 
tomography (QCT) scans, and structure-based models were shown to be appropriate when 
surface strains are of interest [14, 15]. However, the trabecular architecture of bone is not 
explicitly modeled in most cases and a homogenized variable that represents the bone 
apparent density ρapp is used for describing the heterogeneous distribution of porosity and, 
thus, mechanical properties of bone [16]. Bone is an anisotropic material due to preferred 
trabecular orientation and anisotropy of the bone tissue itself, and thus the determination 
of bone’s inhomogeneous mechanical properties and their assignment to the FE mesh is 
yet a major unsolved problem. The mechanical properties of bone depend on composition 
and structure. However, composition is not constant in living tissues. It changes 
permanently in terms of the mechanical environment, aging, disease, nutrition and other 
factors. Many reports try to correlate mechanical properties with composition [12-14, 17-
20]. Another assumption of most FE analyses in the literature is the linearity of the 
constitutive behavior of the bone tissue. This is usually accurate enough, but some authors 
obtain more accurate results by considering nonlinear material properties for cortical and 
trabecular bone [18]. 

The anisotropy of bone could be considered at a tissue level using anisotropic material 
models which mostly use the bone density distribution as a measure of bone trabecular 
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architecture. The measurement of the shape and density distribution can be done using 
imaging modalities and QCT. The shapes of bones are segmented from QCT images using 
image-processing programs, while the gray values (Hounsfield units - HU) in those images 
are related to apparent bone density ρapp using linear relationships 𝜌𝜌𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑓𝑓(𝐻𝐻𝐻𝐻). The 
relationship is calibrated using calibration phantoms with known density values. The 
heterogeneous mechanical properties of bones are then related to bone density through 
empirical relationships such as in Eq. (1).  

The shape and density distribution of bone can be measured [16] using other imaging 
modalities such as magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry 
(DXA) and ultrasound. As the shape of bone is considered as constant traditionally, density 
values are the major variables that are predicted using bone tissue adaptation models. The 
proximal femur consists of cortical (compact) and trabecular or cancellous (cellular) 
regions. Homogenized mechanical properties of both regions as well as isotropic Young’s 
modulus E were experimentally associated with ρapp or ρash. Bone density in turn can be 
correlated to HUs. The complexity in determining material properties is enhanced by the 
anisotropic response which is distributed inhomogeneously throughout the bone. The 
various material properties cannot be obtained from a scalar value (the HU) in CT scans, 
so simplifications must be applied. For example, an FE study [21] compared the response 
of the femur when isotropic or orthotropic material properties were assigned under two 
loading conditions (double-leg standing and single-leg standing) showing that differences 
between the two material property assignments are small. An alternative approach for 
obtaining the 3D shape of bones as well as their density distributions is the use of the so-
called statistical shape and appearance models [16]. Furthermore, CT scan-based FE 
models are most accurate when they are generated from CT scan data [22] with the least 
noise, streak artifact, and beam hardening. As these sources of image degradation increase, 
the accuracy of the CT scan-derived material properties and geometry decreases, and the 
reliability of FE models decreases. Thus, in comparison with in vitro-based FE models, in 
situ-based FE models [19] have an additional source of error that is due to increased noise, 
streak artifact (e.g., motion, metallic objects, out-of-field, edge gradient effects, high-low 
frequency interfaces, equipment malfunctions), and beam hardening from the presence of 
large amounts of soft tissue in the image field. These results demonstrate that using CT 
scan data obtained in situ instead of in vitro to generate FE models can lead to substantially 
different predicted results. This effect must be considered when using this technology in 
vivo. 

Finite element (FE) simulations have become a useful tool as well in the field of 
Orthopedic Surgery and Traumatology, helping surgeons to gain a better understanding of 
the biomechanics, involved in both healthy and pathological conditions. FE simulation 
provides information about the biomechanical changes that occur after prosthesis or 
osteosynthesis implantation, and biological responses of bone to biomechanical changes. 
It has an additional advantage in predicting the changes in the stress distribution around 
the specific zones e.g. implanted, fracture and healing zones, allowing the prevention of 
future pathologies deriving from e.g. unsuitable positioning or shape of the prosthesis [23] 
or improper healing [13]. 

FE simulation has facilitated the understanding of how the load is transmitted not only 
on the bone surface but across the tissue, e.g. after the implantation of a femoral stem, and 
the prediction of how the stem impacts the bone response in the long-term. Modern high-
resolution FE models of cancellous bone can predict apparent yield strength and are often 
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used to estimate the amount of tissue damage generated by overloads. But FEM has several 
disadvantages, such as the fact that models are time-consuming to create and verify. The 
process of acquiring CT images, segmenting the bone from CT images, and converting the 
segmented model to an FE mesh and their associated mechanical properties is costly, time-
consuming, and may need exposure of subjects to high radiation doses. 

The type of the selected mesh elements can affect the results [17, 24]. Generally, voxel-
based micro-finite element models of trabecular bone, where the micro-finite element 
models are generated as brick elements from reconstructed bone voxels, have been mostly 
utilized [20]. However, the voxel-based method requires a very large number of brick 
elements to establish an accurate representation of the micro-structure of trabecular bone, 
and therefore, the application of this approach is limited to a very small volume of bone 
samples. The models could yield numerous errors especially with the voxel element 
because the element could not reflect the geometry well. 

The tetrahedron-based method can be also used to create a smoother representative 
depiction of the micro-structure of trabecular bone. A number of papers present results 
from comparison of different element types [17] with the applied 10-node-tetrahedron 
element type. Over the past two decades, an extensive study on volume mesh generation 
has been performed. Various methods have been proposed to generate volumetric mesh 
with high-quality tetrahedron elements. These techniques can be classified into four 
categories: advancing-front-based, octree-based, Delaunay-refinement-based and lattice-
based methods [25]. 

Furthermore, FEM can also be sensitive to boundary conditions (stress concentrations, 
local stresses) [23, 24], and sometimes the model needs to be refined repeatedly in order to 
ensure that the results are reasonably accurate or valid. 

FEM obtains approximate solutions and has inherent errors. The difficulties involved 
in FE simulations of bone remodeling, such as geometric and material complexity which 
greatly complicates the generation of accurate simulation models, means that the whole 
procedure is very time consuming. Model order reduction (MOR) is a good alternative for 
reducing the time needed. The goal of MOR is to construct a low order reduced model to 
approximate the large-scale original model with a high degree of accuracy, thus reducing 
the computational cost. It has already been successfully applied in many different fields 
such as circuit simulation, vibro-acoustics and microelectromechanical systems (MEMS) 
design and solid or fluid mechanics. For linear systems, many MOR approaches are well 
established and have proven to be very useful in the case of ordinary differential equations 
(ODEs). Many accurate models, including bone remodeling simulations, introduce 
nonlinear equations. A commonly used traditional strategy is to linearize the system first 
and then perform a MOR on the linear system, but the linearization does not always give a 
good approximation of the original nonlinear system. 

Another popular method is proper orthogonal decomposition (POD) which is widely 
used in the research of fluid mechanics as well as MEMS. POD is the generalization of the 
idea of finding a suitable projection base for the reduced model of nonlinear systems as 
done in the linear case. This projection is generated or estimated through information from 
data samples of the state-space of the original model. The POD method delivers reduced 
models, which are more accurate because there is no linearization error. Adapted versions 
(of the POD) are necessary to achieve a reduction in the simulation time because of the 
expensive function evaluations. The proper generalized decomposition (PGD) method for 
numerical solving of multidimensional problems has recently been introduced and widely 
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used. The mathematical foundations of this recent technique have yet to be rigorously 
tested. In fact, some crucial aspects at the very root of the method are not fully understood 
[26]. Thus, nonlinear model reduction in general remains a challenge and research in this 
area is ongoing. 

Various parallel computing techniques have also been proposed in the literature to 
simulate bone regeneration in tissue engineering [20,23]. These techniques could also be 
used for bone remodeling simulations. However, their focus is based on improving the 
multi-scale model rather than accelerating the numerical solution of the bone remodeling 
problem. The paper [26] studies an approach based on vector extrapolation techniques to 
reduce the computational time for the numerical simulation of bone remodelling 
algorithms. Despite the good results of presented numerical methodology, the method does 
have some limitations. In general, the methodology could be applied for any kind of load, 
but, in the case of irregular dynamic loading regimes, re-simulation would be necessary in 
order to improve the density vectors. Furthermore, the presented simplification is an 
accurate approach for the simulation of bone remodeling in a real 3D femur. However, this 
approach may not be valid for any kind of bone, where a high variability in the forces could 
be found. 

Furthermore, generating a predictive FE model of biological tissue strains (e.g., 
physiological-like loading) encounters aspects that are inevitably unclear or vague 
(numerous uncertainties in quantifying the mechanical loading conditions as well as the 
overall mechanical properties of bone tissue) and thus might significantly influence the 
predicted findings [23, 27]. The accuracy of prediction of bone density and the method of 
assigning material characteristics in the FEM modeling significantly affect the accuracy of 
the FEM analysis results. This is clearly evident in [23, 28] and in the endeavor of a group 
of researchers at the University of Niš, Faculty of Mechanical Engineering (MFN), within 
the project VIHOS (Virtual human osteoarticular system and its application in preclinical 
and clinical practice, http://vihos.masfak.ni.ac.rs/site/). The author [23] has presented the 
concept of statically equivalent loads, where the boundary conditions are computed by an 
inverse simulation from CT–data. The mechanical properties of cortical bone are obtained 
from a micro–mechanical approach with several stages of homogenization.  

There are other numerical alternatives, which can be used for bone remodeling 
simulations or other bioengineering applications such as the boundary element method, the 
finite difference method [29], the finite volume method or the meshless method. In the 
literature there are examples of (semi-)analytical and numerical FE approaches for bone 
remodeling models [8, 17, 26, 28, 29]. The (semi-)analytical approaches are normally used 
for convergence results, stability studies and error estimates of different bone remodeling 
theories. However, the FE method has been frequently used for bone remodeling 
simulations of real bones, mainly due to its ability to handle complex three-dimensional 
geometries. Therefore, it is common for bone remodeling theories to be coupled with the 
FEM.  

Application of micro-FE (µFE) analyses could bring some advantages. Based on three-
dimensional microstructural imaging, μFE simulations have become feasible using direct 
conversion of image voxels to either hexahedral or tetrahedral FEs [30]. By resolving the 
bone microstructure, the complex anisotropic behavior of trabecular bone could be 
accurately modeled using an isotropic material model. A clear advantage of μFE is the 
ability to rerun simulations using different types of loading and boundary conditions. 
Furthermore, stresses and strains can be analyzed locally for individual structures. 

http://vihos.masfak.ni.ac.rs/site/
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However, such simulations, although straightforward, are computationally expensive as 
they typically contain millions to hundreds of millions of elements. Various methods have 
been developed to improve computational efficiency [26, 30]. Persistent developments in 
computer technologies would exceed those problems. 

3. DIFFERENT REQUESTS FROM PRACTICE 

Mathematics has its own path for the discretization of the problem and for continuing 
the solutions from PDE and ODE to the visual representation of the solution. A similar 
attitude to the discretization of biological systems to their inherent parts is obvious. 
Biological models apply their specific way to the conclusion by using the holistic approach. 
That is one of the sources of possible cooperation in modeling. The practical demands 
direct the paths of exploration and collaboration of disparate scientific realms. The recent 
useful methods applied for different practical demands are presented in what follows.  

3.1. Bone remodeling and mechanobiology 

Bone remodeling is the continuous process of resorption and formation occurring in the 
skeleton of vertebrates throughout adult life. Remodeling is accomplished by highly 
coordinated groups of bone-forming osteoblasts (OBs) and bone-resorbing osteoclasts 
(OCs) that work together in the so-called “basic multicellular units” (BMUs). Many bone 
disorders such as osteoporosis, Paget's disease and cancer-related bone diseases can be 
ascribed to imbalances between resorption and formation, however, exactly how this 
balance is achieved during normal bone turnover is still unclear. In the last decade, many 
regulatory factors produced by hormonal glands, tumor cells, immune cells, and 
mechanosensing bone cells (osteocytes and bone lining cells) influencing different phases 
of bone remodeling have been identified. Among those factors, the key role of the nuclear 
factor-kappa β ligand RANKL-RANK-OPG pathway receptor activator (Fig.1) in the 
development of degenerative bone diseases has been repeatedly demonstrated. 

To address the question of how different bone cells interact with each other and the 
bone microenvironment during remodeling, several models of cell populations have been 
proposed [31, 32]. These types of models can monitor changes in cell numbers and bone 
volume over time. These mathematical models have been focused on important questions 
such as: how does the interplay of different components in the RANK/RANKL/OPG 
signaling pathway affect bone homeostasis, how can Parathyroid hormone (PTH) both act 
catabolically and anabolically depending on the type of administration [31], and what are 
desirable therapeutic strategies for treatment of osteoporosis [32]. 
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Figure 1. a) The dynamics of responding osteoblasts rOB, active osteoblasts aOB and 
osteoclasts OC. The feedback mechanism, mediated by the RANK/RANKL/OPG 

pathway and by TGFβ, is presented by arcs with arrows, as in [32]. 
b) The process of differentiation of OCs and OBs into three stages of cell maturation is 

presented with continuous straight arrows. The autocrine and paracrine regulation 
(presented with dashed arrows) controlled by factors (RANK, RANKL, OPG, TGFβ and 

PHT) which are attached in the stage of cell when they are expressed, as in [33].  

There is experimental evidence that OB cells express RANKL and osteoprotegerin 
(OPG) differently at different stages of the maturation. The OPG is expressed stronger on 
active osteoblasts aOBs, while RANKL is expressed stronger on responding osteoblasts 
rOBs. Also, transforming growth factor β (TGFβ) activates OB differentiation only in the 
early stage of differentiation. It enlarges the pool of the rOBs by inhibiting further 
differentiation into aOBs. Therefore, the three-variable model corresponds to the system 
of three ordinary differential equations (ODEs) in a general normalized form [31, 33]: 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

= 𝛼𝛼1�𝑠𝑠(𝑐𝑐) − 𝑡𝑡(𝑟𝑟, 𝑐𝑐)�  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛼𝛼2�𝑡𝑡(𝑟𝑟, 𝑐𝑐) − 𝑢𝑢(𝑏𝑏)�  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛼𝛼3�𝑣𝑣(𝑟𝑟, 𝑏𝑏) − 𝑤𝑤(𝑐𝑐)� (2) 

where the first members in brackets on the right side represent the gains and the second 
represent the losses of the population of the representative cell type (where r stands for 
rOBs, b for OBs and c for OCs). The elasticities of these functions representing the 
parameters of the stability and bifurcation analyses [33], their interpretation and range are 
presented in Table 1. αi, i=1,2,3, are defined as ratios between a flux and a concentration 
and thus have the dimension of an inverse time and can be interpreted as the inverse lifetime 
of the representative cell type. Since the average life span of OBs (∼3 months) exceeds the 
life span of OCs (∼2 weeks) by a factor close to 6, and since the scale by which time is 
measured is arbitrary, values for 𝛼𝛼1 = 𝛼𝛼2 = 1 and 𝛼𝛼3 = 6 have been fixed. 
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Table1. Parameters used for the stability and bifurcation analysis of Eq. (2) [31, 33] 

Parameter Interpretation Range 
sc activation of rOB production (via TGFβ) [0,1] 
tc repression of rOB decay (via TGFβ) [-1,0] 
wc activation of OC decay (via TGFβ) [0.5,1.5] 
tr rOB decay linear in r [1] 
vr action of rOBs on OC (via RANKL/OPG) [-1,1] 
ub aOB decay linear in b [1] 
vb action of aOBs on OC (via RANKL/OPG) [-1,1] 

Under physiological conditions and in the absence of external stimuli, the system 
should reside in a steady state, where the numbers of OCs and OBs remain approximately 
constant. For the system to remain close to the steady state, the state must be dynamically 
stable, so that the system is driven back to the steady state after small perturbations. It is 
also desirable that the stationary densities of OBs and OCs react sensitively to external 
influences, communicated through the signaling molecules. Mathematically speaking, this 
means that the system should be robust against fluctuations of the variables, but sensitive 
to changes in the parameters. The example for the two-variable model of different system 
dynamics for small changes of parameters was analyzed in [34]. 

In dynamical systems, the strongest response of steady states to parameter change is 
often found close to bifurcations—critical thresholds at which the stability to perturbations 
is lost. Therefore, it is intuitive that there should be some tradeoff between dynamical 
stability and responsiveness. It is thus possible that the physiological state of the bone 
remodeling system is characterized by parameter values close to a bifurcation point. The 
stability and bifurcation analyses of Eq. (2) solutions that have been performed in [33] 
show that in a parameter space supported by experimental findings the system operates 
close to a region of instability. The main benefit of this operating is probably that a stronger 
adaptive response to external changes of the model parameters is possible. Despite the 
benefits, operating close to a bifurcation also poses risks to the system. A change in the 
parameters by an external process can shift the system over the bifurcation, so that the 
stable steady state becomes unstable or ceases to exist [34]. It is therefore reasonable to ask 
whether certain diseases of bone can be related to bifurcations, leading to qualitatively 
different dynamical behaviors. This model has not included external effects, but it has been 
discussed in [35], as will be described later. An intriguing possibility, raised in [2, 32], is 
that some bone diseases might have their cause not in a shift of the steady-state 
concentrations, but in a bifurcation, in which the stability of the steady state is lost. 
Dynamical systems theory has established a large variety of powerful tools for detecting 
and analyzing bifurcations. If a given disease were found to be related to a bifurcation 
phenomenon, this arsenal of tools could be utilized for understanding the causes and 
consequences of the disease. 

The next level in spatial sequence of bone modeling is the cellular level. Cells are the 
living component of bone, and it is the movement and activity of cells that enables bone to 
adapt to its dynamic environment; hence cells must be considered in any model of 
engineered bone tissue. The cell dynamics modeling has influenced valuable research [5, 
7, 8]. As the dynamics of the bone remodeling process was integral part of the mentioned 
research, it is described in more detail in what follows. 

During bone remodeling BMUs travel at a rate of 20–40 mm/day for 6–12 months, 
maintaining a cylindrical structure [8]. A mathematical model of BMU has been developed 
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[8] by describing changes in time and space of the proresorptive cytokine RANKL and its 
inhibitor OPG concentrations, in osteoclast and osteoblast numbers, and in bone mass. In 
this study, the authors introduce a spatial extension of the temporal model suggested by 
Komarova et al. [31] resulting in a novel nonlinear model comprising a system of partial 
differential equations (PDEs), which describe the role of the RANK/RANKL/OPG 
pathway in attracting and promoting the BMU, as well as the autocrine and paracrine 
interactions between osteoclasts and osteoblasts, the main constituents of the unit. The 
model consists of five state variables: densities of osteoclasts and osteoblasts, 
concentrations of OPG and RANKL, and the local bone mass. The assumption was that 
osteocytes surrounding a microfracture produce RANKL, which attracted osteoclasts. OPG 
and RANKL were produced by osteoblasts and diffused through bone, RANKL was 
eliminated by binding to OPG and RANK. Osteoblasts were coupled to osteoclasts through 
paracrine factors. The evolution of the BMU arising from this model was studied using 
numerical simulations. One of the most important part of remodeling, as it was revealed 
from the Komarova et al. model [31], is the periodicity of the process as referred in [7, 33-
35]. The authors [7] considered a simplified model, similar to [31], in 2003, consisting of 
three ODEs and introducing delays. As the spatial movement inside the BMU is small, the 
models based on ODEs can be used. The delays appear because there is a lag in the change 
of the osteoblast population due to changes in the population of osteoclasts, and vice versa. 
The properties of the system, including stability and bifurcation, have been studied and it 
was found that the Delay Differential Equations (DDE) have Hopf bifurcations that give 
periodic solutions. The numerical solutions have been calculated to illustrate the behavior 
of the solutions. As expected, the introduction of the delays changes the dynamics of the 
original model [31]. This research found that the delays destabilize the periodic solutions 
of the original model. It also found that by starting with values of the parameters for which 
the model [31] has a stable focus, by increasing the delays it is possible to obtain periodic 
solutions. As it was concluded by [7] the introduction of delays makes the model more 
useful to medical researchers and medical doctors who can test whether it is better to 
increase an autocrine signal or a paracrine one to obtain the desired effect, and to test 
similar hypotheses.  

The Komarova type models are attracting research and drawing attention to their 
results, which the latest papers [34, 35] prove. In these papers a simplified model of [31] 
has been considered, in which the autocrine signaling of osteoclast and osteoblast is 
proportional to their populations. To distinguish the biological model presented in Fig. 1.a, 
this model also includes the cell death stages, Fig. 1.b. The mathematical model consists 
of two nonlinear ODEs and a third equation for bone generation, where the difference is 
made between differentiation rates of the OBs and OCs precursors αi and the speed of the 
cells degradation process βi, i=1,2: 

 𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑢𝑢1,𝑢𝑢2) − 𝛽𝛽𝑖𝑖𝑢𝑢𝑖𝑖    ,     𝑖𝑖 = 1,2  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑘𝑘1𝑣𝑣1 + 𝑘𝑘2𝑣𝑣2  for   𝑣𝑣𝑖𝑖 = �𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖 , 𝑖𝑖𝑓𝑓 𝑢𝑢𝑖𝑖 > 𝑢𝑢𝑖𝑖
0,   𝑖𝑖𝑓𝑓  𝑢𝑢𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖

�,     𝑖𝑖 = 1,2 (3) 

where 𝑢𝑢𝑖𝑖 are the densities of OCs for 1=i 2=i , ( )21,uufi
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approximation: ( ) 2111
21211 , γγ uuuuf =  and ( ) 2212

21212 , γγ uuuuf = , where 𝛾𝛾𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1,2 and 𝑗𝑗 =
1,2 are defined by regulators RANK, RANKL, OPG and TGFβ. The third equation, the so-
called bone mass equation, describes the activity of bone resorption and formation where 
𝑧𝑧 is the total bone mass, 𝑘𝑘𝑖𝑖 are the normalized activities of bone resorption and formation 
and 𝑢𝑢𝑖𝑖 are the steady states for the OCs and OBs. 

The structure of the system of Eqs. (2) and (3) seem to be similar but it should be 
mentioned that for stability and bifurcation analysis of nonlinear systems conclusions differ 
from the parameters in equations, and not on their structure, whereas there are some general 
rules coupled with structure. The steady solutions, their nonlinear stability and the 
existence of positive periodic solutions of a model have been studied and it has been 
confirmed that the model Eq. (3) has good qualitative features that were observed 
experimentally, which has been also concluded, among others, in [33] for the system in Eq. 
(2). 

An important feature of the OCs–OBs models [5, 33, 34] is that they are based on the 
hypothesis of isolated populations, which is not realistic in human biology. Therefore, a 
new model, suggested by [35], by adding another term which functions as a regulator of 
the bone remodeling process that includes the external signaling (as the osteocytes activity 
via the PHT which is an anabolic agent that stimulates the production of OCs), has been 
proposed. The two types of external signals were observed - the constant impulse and the 
signaling function type switch that is time dependent. With a nonlinear stability analysis 
authors have shown that the modified model yields a positive non-oscillatory solution. This 
behavior of the solution is consistent with the bone remodeling cycle and returns to a 
quiescent state after three or five months, as in [31]. The authors have given a parametric 
range as conclusion, based on the nonlinear analysis, where their simplified Komarova’s 
model exhibits periodic solutions. They have introduced external agents to such a model 
and have analyzed theoretically their effects, finally presenting numerically the behavior 
of the solutions for the model with and without external agents based on realistic data. The 
author [36] developed these ideas on the five-variable model that also includes osteocyte 
(OCy) population dynamics by modeling the mechanobiology of bone remodeling to the 
periodic external signals. Since the mathematical model of such a complex system is 
inherently intertwined with noise, the analogue stochastic model was also developed, so 
that the time series and phase plots for 100 simulations of bone cell dynamics, presented 
in Fig. 2, reveals interesting phenomena of doubling periods under external stimuli. The 
yellow sections at the phase plots represent the most visited regions of trajectories over 100 
simulations. Making in-silico experiments with a stochastic mathematical model we were 
in the position to discuss the influence of included oscillatory signals between received and 
sent signal by osteocytes, and we concluded that the signal with small delays provides the 
closest matches between the calculated data and biology theory. We also examined the 
magnitude and frequencies of external signals and justified that the stronger the 
oscillations, the more the phase plane resembles a loop of doubling periods (∞ shape), 
yellow sections presented in the phase plans (Fig. 2), indicating the regularity in the cellular 
communications. 
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Fig. 2 Bone tissue active cells periodically excited (left). The three images on the top are 
OcY, OC and OB concentrations over time, respectively. The bottom 3 images are the 

phase planes of the two of these variables averaged over 100 simulations. 

The group of authors gathered around Buenzli and Pivonka, [5, 6, 37] has made a 
considerable development of their methods by permanent improvement of their ideas 
connected with the experimental results, but also by using the contemporary mathematical 
theories. Recent experimental evidence suggests that OB proliferation plays an important 
role in the regulation of bone remodeling. The authors in [37] have developed a novel 
computational (biological) model of bone cell interactions that includes OB proliferation. 
This model accounts for a catabolic regulatory mechanism of bone remodeling, mediated 
by the RANK–RANKL–OPG pathway, and a new anabolic regulatory mechanism of bone 
remodeling, driven by OB proliferation.  

As the number of cells, their receptors, inhibitors and inter signaling mechanisms is 
abundant in the bone remodeling process, as shown previously, one can conclude that the 
variety of the combinations are still open to be researched and to be elucidated. For 
instance, the paper [6] reveals an interesting presentation of osteocytes derived from bone-
synthesizing cells (OBs) that become buried in the bone matrix during bone deposition. 
The generation of osteocytes is a complex process that remains incompletely understood. 
Whilst OB burial determines the density of osteocytes, the expanding network of 
osteocytes regulates in turn OB activity and OB burial. A spatial-temporal continuous 
model was proposed [6] in order to investigate the osteoblast-to-osteocyte transition. Paper 
[35] examines the temporal population model for mechanotransduction of the external 
periodic signals through a network of communicating OB-OB-OCy cells. 

3.2. Biomechanics 

Modeling tissue function is the next level that considers bone as an organ with the 
mechanical function as its major function. Bones support the body weight and act as stiff 
levers for attachment of the tendons/muscles, thus providing the ability for locomotion. 
Biomechanics is the discipline applying mechanical principles to study tissue function and 
it is the focus of this subsection. Biomechanics comprises a variety of engineering fields 
that include material science, structural engineering, and mechanical engineering, among 
others. In the last decade the bone biology field has seen a large shift from a purely 
biochemical view to a coupled biochemical–biomechanical view of bone regulation, which 
has allowed the application of biomechanics principles to diverse questions such as 
estimation of material properties of bone, adaptation of bone to mechanical forces and 
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fracture healing. Analysis of mechanical properties of bone is a major aspect of 
biomechanics, which is concerned with the investigation of stiffness, strength, toughness 
and fracture properties of bone tissue. In the recent literature on bone biology the 
mechanical properties of bone have been associated with the somewhat non-quantifiable 
term “bone quality” which includes the combination of bone geometry, bone material 
properties, and bone microstructure. One of the difficulties in applying engineering 
methodology to assess the mechanical properties of bone is the fact that bone represents a 
complex material, composed of several different phases including hydroxyapatite, 
collagen, and non-collagenous compounds, as well as pores. For complex materials, the 
important step in developing material models is to address the question of how different 
material phases, such as hydroxyapatite and collagen in bone interact with each other. Such 
questions can be elegantly addressed within the framework of continuum micromechanics. 
Using this approach, it was found that mineralized tissues, including bones, at an 
observation scale of microns, act as open isotropic hydroxyapatite crystal foams which are 
reinforced unidirectionally by crosslinks between collagen and hydroxyapatite. Based on 
the information about the relative fractions of mineral and collagen in different bones of 
different species, the model was able to predict the structural stiffness tensor of different 
mineralized tissues. In [38] the authors applied this approach to study the diversity of 
elastic properties of trabecular and cortical bone, and found that within the framework of 
the model, the elastic properties of different bones are determined by the relative fraction 
of hydroxyapatite, collagen and water, which themselves were assumed to exhibit only 
tissue-independent properties. 

Another biomechanical issue is related to the ability of bone tissue to adapt to 
mechanical loading. According to mechanostat theory, bone responds to changes in 
mechanical loading by appropriately adapting its mass/volume to the mechanical 
environment. We know that the bone microstructure does not represent random 
orientations of the rod- and plate-like trabeculae, but that their alignment is very well 
oriented to withstand the forces of daily loading. According to the theory, bone will be 
formed in regions with high mechanical strains and removed from unloaded bone 
structures, hence guiding the tissue structure towards an optimal form that ensures a 
homogeneous stress distribution. The task of finding an optimal structure based on a given 
loading scenario is a classical problem of structural optimization, which civil and 
mechanical engineers have dealt with since the 1970s. The mechanical stimulus that drives 
bone tissue adaptation is dependent on the large number of muscle and joint reaction forces 
that change during different physical activities and are different from one person to the 
other. There is no simple non-invasive way for in vivo measurement of musculoskeletal 
forces and their distribution as it is in civil or mechanical engineering problems.  

Different methods of mechanics are used to elucidate problems of bone modeling. The 
continuum damage mechanics and theory of crack propagation modeling could be used to 
explain the osteocyte signal reduction due to microcracks in bone structure [39, 40]. The 
authors in [40] have used a combined continuum damage mechanics and finite element 
approach. They have used a preliminary study proposed to simulate the fatigue behavior of 
cancellous bone based on the assumption that the fatigue behavior of trabecular bone is 
similar to that of cortical bone. Thus, a bone damage resorption FE model based on the 
disruption of the inhibitory signal transmitted between osteocytes in bone due to damage 
accumulation was developed and discussed. 



20 J. SIMONOVIĆ, N. KIZILOVA 

A strain-based stimulus function coupled to a damage-dependent spatial function was 
proposed to represent the connection between two osteocytes embedded in bone tissue. The 
signal was transmitted to the bone surface to activate bone resorption. The proposed model 
was based on the idea that the osteocyte signal reduction is not related to the reduction of 
the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal 
traveling along a disrupted area due to microcracks that can destroy connections of the 
intercellular network between osteocytes and bone-lining cells. Study [39] confirms that 
although linear elastic fracture mechanics is often used in studying the fracture toughness 
of bone, it may underestimate how tough bone is - since it does not account for the energy 
spent on plastic deformation. The J integral, a parameter that quantifies both the energies 
consumed in the elastic and plastic deformations, is presented to accurately describe the 
toughness of cortical bone. The energy spent in the plastic deformation of the longitudinal 
fractured and transverse fractured bovine specimens was found to be about 4 times the one 
spent in elastic deformation. Bone, with its elaborate hierarchical assembly, high amount 
of organic matter, and water-assisted bonding, was shown to absorb a great amount of 
energy in plastic deformation before fracture. Therefore, it was suggested in [39] that the J 
integral method is a better technique in estimating bone toughness for including both the 
elastic and plastic contributions. Nevertheless, study [30] concluded that prediction of the 
failure of bone could be further improved, and obtained more directly by describing bone’s 
post-yield, nonlinear behavior. When analyzing the nonlinear properties of bone tissue 
experimentally, results from four-point bending tests indicate ductile failure modes 
involving microcrack damage combined with a plasticity component originating from the 
collagen fibers. Data from such experiments have been incorporated into a model’s 
constitutive law [41] and have been used to define a failure criterion, resulting in nonlinear 
μFE models. The most frequently used nonlinear material model is a bilinear elastic–plastic 
model with different Young’s moduli for tension and compression, combined with a 
reduction of the elastic modulus if strains exceed a previously defined yield strain. 

The computation time of the nonlinear models was a major concern and limited the size 
of the analyzed region, as they took about 10 times longer (about 24 h per sample) than the 
linear simulations (about 2.5 h per sample) on roughly comparable computing clusters. In 
addition to the bilinear elastic–plastic model, there are more complex nonlinear models, 
assuming finite-plasticity, strain-rate dependent elastic–plastic behavior or a perfect 
damage model [41]. While they are typically very versatile and closely match the findings 
from mechanical tests of the bone ultrastructure, they are often computationally even more 
expensive. Furthermore, some models have not been yet validated and the determination 
of required parameters needs further investigation. While current nonlinear models can 
describe ductile, plastic material behaviors, some experimental observations at micro and 
nanoscales are yet to be included. Toughening effects due to ligament bridging of 
microcracks and the role of heterogeneity at the nanoscale are more difficult to model in a 
constitutive law, as they are intrinsically stochastic, and little is understood about their 
effects. Simulating the dynamic behavior of bone at the ultrastructural level is even more 
challenging, as the growth rates of microcracks must be assessed and translated into viscous 
properties. Furthermore, there is an indication that failure can only be predicted when 
nonlinear geometric behavior due to large displacements such as buckling and bending of 
trabeculae is considered. 

Poroelasticity is a well-developed theory for the interaction of fluid and solid phases of 
a fluid-saturated porous medium. It is widely used in geomechanics and has been applied 
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ijσ , the pore pressure p, the strain in the solid phase ijε , and 
the variation in (dimensionless) fluid content ζ . The variation in fluid content ζ  is the 
variation of the fluid volume per unit volume of the porous material due to diffusive fluid 
mass transport. In the theory of isotropic poroelasticity constitutive stress-strain relations 
are: 

 𝜎𝜎𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝛿𝛿𝑖𝑖𝑖𝑖 = 2𝐺𝐺𝜀𝜀𝑖𝑖𝑖𝑖 + � 2𝐺𝐺𝐺𝐺
1−2𝐺𝐺

� 𝜀𝜀𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 (4) 

where G and 𝜈𝜈 are the drained isotropic elastic constants, the shear modulus and the 
Poisson’s ratio of the material, respectively, 𝛼𝛼 is the ratio of the fluid volume gained (or 
lost) in a material element due to the change of that element volume when loaded under 
the drained condition, and B is called the compressibility coefficient or Skempton pore 
pressure coefficient. The relation between the dimensionless fluid content ζ  and the stress 
involves the same parameters: 

 2𝐺𝐺𝐺𝐺 = 𝛼𝛼 �1−2𝐺𝐺
1+𝐺𝐺

� �𝜎𝜎𝑘𝑘𝑘𝑘 + 3𝑎𝑎
𝐵𝐵
� (5) 

Coefficients B and 𝛼𝛼 represent aspects of the structural response associated with both 
the solid and the fluid, 𝛼𝛼 is the ratio of the fluid volume gained (or lost) in a material 
element due to the volume change of that element when loaded under the drained condition, 
and 𝜈𝜈 is a measure of the relative compressibility of the fluid and solid phases. For 
anisotropic interpretation, the Skempton tensor is ( )m

ijqq
d
ijqqcij CCKB −= , cK  is the 

composite bulk modulus [42], d
ijqqC  and m

ijqqC are interpreted below. 
The constitutive equations of poroelasticity, Eq. (4), are completed by the addition of 

Darcy’s law, Eq. (9), to predict flow of fluid through pores in bone. The results of [44] 
suggest that water content in bone tissue dictates the bulk behavior of bone by altering the 
interaction between mineral crystals and their surrounding matrix. 

Significant differences were observed in the bulk mechanical properties of bone 
between wet and dry specimens in different loading modes (compression vs. tension). Dry 
bone specimens were stronger and stiffer than wet bone specimens (Tab. 2) and showed 
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little post-yield deformation. On the other hand, wet bone specimens exhibited appreciable 
plastic deformation and failed at much higher strain levels. In addition, considerable 
differences in mechanical behavior of bone were also observed between tension and 
compression, showing that the post-yield behavior of wet bone specimens demonstrated a 
strain hardening effect in tension, but a strain softening effect in compression. Moreover, 
wet bone specimens showed a greater failure strain in compression than in tension (Table 
2). 

Table 2. Bulk mechanical properties of bone under wet and dry conditions in tension and 
compression [44]. 

 Tension  Compression  
 wet dry wet dry 

Elastic modulus E (GPa) 18.6±1.2 24.8±0.7 11.2±1.3 17.7±3.4 
Ultimate strength (MPa) 87.6±6.4 127±3.4 106.8±18.8 245±31.5 
Failure strain (%) 1.3±0.3 0.6±0.02 16.4±0.91 1.5±0.40 

Table.3 Summary of poroelastic constants  

Property (units if any) Cowin, 1999 Steck et al., 2003 Colloca et al., 
2014 

𝐺𝐺𝑎𝑎 (GPa) shear modulus of 
solid 

5.5 6.3=longlG
, 

3.3=transG  

 

𝜈𝜈 drained Poisson’s ratio 0.32   
𝜈𝜈𝑎𝑎 Poisson’s ratio of solid 0.325 0.38 (0.41)  
𝜈𝜈𝑢𝑢 undrained Poisson’s ratio 0.33   
K (GPa)-drained bulk 
modulus 

12   

𝐾𝐾𝑢𝑢 (GPa)-undrained bulk 
modulus 

13   

𝐾𝐾𝑎𝑎 (GPa)-bulk modulus of 
solid 

13.92  13.3 

B-compressibility coefficient 0.4   
𝛼𝛼 -effective stress coefficient 0.14   
𝐸𝐸𝑎𝑎 (GPa)- Young’s modulus of 
the solid 

14.58 𝐸𝐸𝑟𝑟𝑡𝑡𝑙𝑙𝑙𝑙𝑟𝑟 = 17, 
𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎 = 11.5 

𝐸𝐸𝑟𝑟𝑡𝑡𝑙𝑙𝑙𝑙𝑟𝑟 = 18, 
𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎 = 9 

k (m2) -specific permeability 1.5 ∙ 10−20 1510−=periostealk
1210*2 −=endostealk  

 

c x10-6 (m2 s-1) pore fluid 
pressure diffusion coefficient 

0.51   

The retrospective article [45] describes the work on multiscale mechanobiology in 
context of bone engineering. They have used biosystems engineering, computational 
modeling and actual experimental approaches to understand bone physiology, in health and 
disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as 
evolution) and length scales (a single bone such as the femur, in m; a sample of bone tissue, 
in mm to cm; a cell and its local environment, in mm; down to the length scale of the cell’s 
own skeleton, the cytoskeleton, in nm). Firstly, they introduced the concept of flow in bone 
and the three calibers of porosity, matrix, pericellular and vascular porosities, where the 
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fluid flows. Then they described, in the context of organ–tissue, tissue–cell and cell–
molecule length scales, both multiscale computational models and experimental methods 
to predict flows in bone and to understand the flow of fluid as a means to deliver chemical 
and mechanical cues in bone. Addressing a number of studies [45] in the context of multiple 
length and time scales, they referred the importance of appropriate boundary conditions for 
site specific material parameters, permeability measures and even discussed micro-nano-
anatomically correct geometries in the context of model predictions and their value for 
understanding multiscale mechanobiology of bone. Theoretical framework for study of the 
interplay between mechanics and transport in bone [45], with governing equations could 
be presented on a following path: 

1a) Theory of Poroelasticity to predict flow in elastic, fluid-filled substrate. 

The goal of idealizing bone as an elastic matrix using linear elastic equations 
(continuum) of Hooke`s law is to predict stress, deformation behavior of structure: 

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟𝜀𝜀𝑘𝑘𝑟𝑟,  for  𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 = 1,2,3 (6) 

where 𝜎𝜎𝑖𝑖𝑖𝑖  is the stress second-order tensor, and ijε is the strain second-order tensor related 
with displacement 𝑢𝑢𝑖𝑖 as: 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑢𝑢𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄  

The fourth-order tensor 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟  is a linear map between second-order tensors represented 
by a matrix of 3×3×3×3 = 81 real numbers, usually called the stiffness tensor or elasticity 
tensor. In fact, the bone matrix is characterized by a transversely isotropic elasticity tensor 
and modeled as mineral foam of hydroxyapatite which is “reinforced” predominantly in 
the longitudinal direction by collagen fibrils, while the transverse stiffness is mainly 
governed by the mineral concentration. Relevant values for this tensor were introduced in 
[46] where the average tissue elasticity properties were successfully identified through a 
coupled approach comprising 10 MHz pulse transmission ultrasound with universal rules 
governing the composition and the hierarchical mechanical functioning of mineralized 
tissues, resulting in the following stiffness tensor of extracellular bone tissue: 
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Although this composition is rather constant in healthy adults, it is known to vary during 
development and with diseases, e.g. osteogenesis imperfecta. This variation stems from a 
variation in the bone tissue composition, i.e. from its mineral, collagen, and water contents 
[36, 46]. The agreement of 𝑐𝑐1111 = 𝑐𝑐2222; 𝑐𝑐2233 = 𝑐𝑐1133 and 𝑐𝑐2323 = 𝑐𝑐1313 indicates the 
approximate transverse isotropy of the considered human femur specimens, and the 
micromechanics approaches given by [36] represent good agreement with these 
symmetries. The authors have studied  the three concepts of a micromechanics of bone: the 
first one was ‘collagen–reinforced mineral matrix’, where the ultra-structure was 
considered as mineral foam (with water and non-collagenous organic material in the inter-

https://en.wikipedia.org/wiki/Stiffness_tensor
https://en.wikipedia.org/wiki/Elasticity_tensor
https://en.wikipedia.org/wiki/Elasticity_tensor
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crystalline space), serving as a matrix in which the collagen was included; the second was 
more realistic representations of the organization of collagen within the mineral foam as 
an interpenetrating network of hydroxyapatite crystals and collagen molecules. Since there 
are mineral crystals also within the collagen fibrils, they have considered interactions 
between single collagen molecules and mineral crystals and the third was the combination 
of both concepts, where mineralized fibrils (mineral–collagen networks) are embedded in 
a ‘pure’ mineral foam (without collagen).  

The extended version of the constitutive Eq. (6) is the equation used by [41] that 
includes the pore pressure, thus: 

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟𝑑𝑑 𝜀𝜀𝑘𝑘𝑟𝑟 + �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 �𝛼𝛼 (7) 

Where the drained, the undrained and the matrix elastic compliance constants, denoted by 
𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟𝑑𝑑 , 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟𝑢𝑢 and 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑟𝑟𝑚𝑚 , respectively, were developed and presented in Ref. [41] for anisotropic 
and orthotropic property of the bone material. 
Bone fluid interaction is modeled as pores filled with viscous fluid to predict flow velocity 
𝑣𝑣(𝑥𝑥, 𝑡𝑡) with Navier-Stokes equation representing the conservation of momentum, mass and 
energy: 

 
( ) fvpvv
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where 𝜌𝜌 is the density, v  is the flow velocity, 𝛻𝛻 is the delta operator, 𝛼𝛼 is the pressure, 𝑓𝑓 
are the body forces e.g. gravity 𝑔𝑔 

1b) Darcy`s Law to predict flow of fluid through pores in bone: 

 𝑄𝑄 = −𝜅𝜅𝜅𝜅
𝜇𝜇
�𝑎𝑎𝐵𝐵−𝑎𝑎𝐴𝐴

𝐿𝐿
� = −𝜅𝜅

𝜇𝜇
𝛻𝛻𝛼𝛼 (9) 

The total discharge (volumetric flow rate), Q  (units of volume per time, e.g., m3/s) is 
equal to the product of the intrinsic permeability of the medium, 𝜅𝜅 (m2), the cross-sectional 
area to flow, 𝐴𝐴 (m2), and the total pressure drop (𝛼𝛼𝐵𝐵 − 𝛼𝛼𝜅𝜅), (Pa), all divided by the viscosity, 
𝜇𝜇 (Pa·s) and the length (𝐿𝐿) over which the pressure drop is taking place. The negative sign 
is needed because fluid flows from high pressure to low pressure. 

2) Diffusion-Convection equation for transport to predict the concentration of solutes 
in space and time t : 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝐷𝐷𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝑢𝑢𝑖𝑖𝐶𝐶� + 𝑆𝑆 − 𝐾𝐾𝐶𝐶 (10) 

where 𝐶𝐶(𝑥𝑥𝑖𝑖 , 𝑡𝑡) is the concentration, 𝐷𝐷𝑖𝑖  the diffusion coefficient, 𝑢𝑢𝑖𝑖 the velocity vector 
component, K  the reaction rate and S  describes the sources or sinks of the quantity C . 
For a biological species, 𝑆𝑆 > 0 means that a biological reaction is creating more of the 
species, and 𝑆𝑆 < 0 means that a reaction is destroying the species.  

https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Permeability_(fluid)
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Chemical_reaction
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An overview of the theory of poroelastic materials can be obtained by considering it as 
a system of 20 equations in 20 scalar unknowns. The 20 scalar unknowns are the six 
components of the stress tensor 𝜎𝜎𝑖𝑖𝑖𝑖, the fluid pressure p, the fluid content C, the six 
components of the strain tensor 𝜀𝜀𝑖𝑖𝑖𝑖, the three components of the displacement vector 𝑢𝑢𝑖𝑖 and 
the three components of the fluid mass flux vector 𝑄𝑄 = [𝑞𝑞𝑖𝑖]. The 10 scalar constitutive 
equations of poroelasticity are the three scalar equations of Darcy`s law, Eq. (9), the six 
scalar equations of the strain–stress–pore pressure relation, Eqs. (8) or (6), and the one 
scalar equation of the fluid content–stress–pore pressure relation, Eq. (7). The other 10 
scalar equations that make up the set of 20 equations are the six scalar equations of strain–
displacement relations, the three scalar equations of the conservation of linear momentum 
(also called the stress equations of motion) and the scalar equation of mass conservation. 
𝜕𝜕𝐺𝐺 𝜕𝜕𝑡𝑡⁄ = 𝑞𝑞𝑘𝑘,𝑘𝑘 = 𝜌𝜌, 𝑞𝑞𝑘𝑘 is the fluid mass flow rate in the 𝑥𝑥𝑘𝑘  direction and 𝜌𝜌 is the source 
density, encompassed in the conservation of momentum, mass and energy Eq. (10). 

There are both analytical and numerical methods for the solution of poroelastic 
boundary value problems. These include analytical methods (displacement potentials, 
method of singularities) and computational methods (finite element and boundary 
element). Poroelastic FE models provide a platform to understand the interplay between 
mechanical loading and molecular transport in bone. Taking a two-step approach, 1a and 
1b, stress and deformation behavior of the bone’s solid structure are predicted. Then flow 
is predicted in the idealized elastic substrate using Darcy’s law for fluid flow through pores. 
To account for the spatial-temporal transport of solutes in the bone fluid, the flow through 
the micro and nanochannels of bone was predicted [45] using the Navier-Stokes equations, 
assuming that inertial effects could be ignored. Finally, the diffusion convection transport 
equation was applied by [47] to predict the concentration of solutes in space and time. FE 
approaches are also very useful for understanding the relative importance of boundary 
conditions for flow in bone, where variables can be changed parametrically to predict 
which boundary conditions will exert the greatest effects on flow behavior [45, 47]. 

Experimental measurements of actual flow through bone or hindrance to flow serve to 
validate the theoretical prediction and/or to reject inaccurate models. The models were able 
to predict and prove among others that the loading mode (pure compression, tension, 
bending and torsion) exerts a significant effect on the distribution of pore pressures in bone. 
It was also referred that a hurdle in understanding bone mechano-chemical-transduction 
was the order of magnitude discrepancy in shear stress magnitudes needed to trigger 
changes in the baseline of bone cell activity in vitro compared to those calculated for an 
organ or tissue during physiological loading. Hence, to better understand the nature of cell-
scale mechanical signals at a time when imaging resolution was inadequate to observe flow 
directly, they have developed an additional model to calculate flow in the pericellular space 
of an atomically correct periosteocytic process flow channels. Studying the effect of model 
geometry at cell-sub-cell length scale, they have gained an acute appreciation for the 
balance between building models that are efficient (with respect to computing time) and 
models that are efficacious. This insight underscored the importance of testing idealizations 
as part of model validation! 

To sum up, depending on the system of interest, bone can be modeled in a variety of 
ways. Key elements that are common to all models include the function that is to be 
replaced (which defines the goal of the model), the control volume (an abstract 
representation of the highly idealized model that aids in reducing the system to one with a 
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finite, determinate set of variables), governing equations that provide mathematical 
predictions of model behavior in response to changes in system variables, boundary and 
initial conditions. The size and boundaries of the model, system or control volume are 
determined by a variety of factors, including the tissue type and component to be modeled, 
as well as the length and time scale to be addressed in the system of interest. Depending on 
the function to be addressed, the time scale of the system may vary from fractions of a 
second, as in cell signaling, to periods as a month, the time it takes osteoclasts to resorb a 
cavity and osteoblasts to fill it in with fresh osteoid, to months and years, the time it may 
take a bone to regain its prior mechanical strength after fracture. 

At the end, we can conclude even though mentioned models are generally well 
developed, there is a lack of well-developed mechanistic models that establish all necessary 
links with biology. It is interesting to couple the effects of mechanical stimuli with those 
of biological stimuli. The signaling pathways and the contributions of hormones and 
growth factors are also of importance. The coupling of bone remodeling and calcium 
homeostasis should also be considered. There are recent attempts to address these 
shortcomings and combine system biology approaches with multi-scale mechanical models 
[48]. However, the problem of developing an adequate mechanistic model of bone tissue 
adaptation remains open, but we all agree that current and future advances in technology, 
in particular imaging technology, will aid researchers in pushing the envelope of discovery 
by enabling in situ measurement of bone material properties (e.g., flow fields and hydraulic 
permeability, porosity, anisotropy) at multiple length scales. 

4. CONCLUSION AND FUTURE DIRECTIONS 

In the late 20th and the first decades of the 21st century, the large‐scale modern 
biological achievements were shaped by advances in technologies, material and 
computational science and all together have found their application in medicine. The 
current maturity of the field of mathematical modeling of bone tissue can be gauged by the 
number of review articles addressing the topic in the past thirty years [1, 2, 11, 13, 45, 48] 
and perspectives for the future development of the field appear just as bright. On the one 
hand, we have witnessed the emergence of a whole new class of bio-tech studies that are 
deeply immersed in mathematical and biological science. On the other hand, we are still 
faced with numerous unclear problems, some of which have been stressed previously. 
However, the nature of the connection between medical and biological science and 
mathematics in recent research has begun to change in important ways. The joint efforts of 
mathematics and biology are becoming more useful in medicine relevant to the life quality 
improvement. Most outstanding issues remain linked with ambiguities of mathematical 
results and their discrepancy with experimental results in the modeling of biological 
tissues. This, of course, opens the next avenues for both improvements in mathematical 
methods as well as in biological models of tissues, especially bone tissue, but the solutions 
are squarely in the multidisciplinary approaches of science. 

Science is defined by its predictive power. A mature science, such as mathematics, is 
one where the principles, cause-effect theories, and supporting empirical evidence have 
accumulated to such an extent that predictions can be made. Thus, mathematical modeling 
is a superior tool for a) examining whether a complex biological model can describe the 
observed data; b) identifying the most important aspects of a biological model; c) 



 Mathematical Approaches of Bone Tissue Modelling 27 

predicting an experimental outcome consistent with the biological model; d) augmenting 
data analysis and e) examining potential changes in the biological model when 
experimental results differ from the prediction that can account for the difference. In less 
mature sciences, such as biomechanics, biomathematics or tissue engineering, predictive 
power is lacking. Knowledge of the underlying cause‐effect relationships may be absent or 
only dimly understood, due to the lack of available parameters to be measured. In the area 
where the underlying science is more mature, knowledge is often modular. With deeper 
understanding comes the knowledge about fundamental constituent parts and how those 
interact. In less mature fields of knowledge, the situation is more complex. There may be 
a sense of different “pieces”, but their boundaries may not be clearly defined, and 
interactions may not be well understood. Mathematical modeling comes to the forefront 
with the already proven track record of augmenting experimental analysis, providing new 
information about the potential mechanisms, and suggesting new hypotheses that allow for 
a deeper understanding of underlying complexities. 

The possibility of in-silico experiments provides the technique to check the proposed 
models and their approaches. The learning from the failures of these experiments is also 
needed. Disagreement of what we got and what we expected from the models gives room 
for improvement, and the failures are the norm, not exceptions. The known pales in 
comparison to what remains to be discovered. New hypotheses and new findings must be 
constantly evaluated. Knowing the right answer is far less important than knowing the right 
experiment to run, which can assist in directing biological experimentation. A unique 
bridge between biological models and experimental validation, with mathematical 
modeling and in-silico experiments, is an integral part of modern research in bone tissue. 
The future advancement of bone biology research will strongly rely on how well 
experimental and theoretical groups can communicate and collaborate with each other. 

Finally, it is necessary to emphasize the role of results visibility, availability and 
publishing that create the state of the art in contemporary of the field. A scientist who has 
spent decades researching a particular topic will have accumulated a lot of knowledge 
about their specialty. Very often, what individual scientists know about the underlying 
biology of a disease cannot be reduced to precise rules, so data from experiments are 
subjected to different interpretations. Moreover, what constitutes a strong signal for one 
researcher may give another pause. Sharing experiences over extended periods of time is 
important and presentation of results in the contemporary literature is necessary. We hope 
that this review gives some guidance on how theoretical tools such as mathematical 
modeling can be used in bone biology research. 
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