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Abstract
Our main goal is to provide a clear, understandable picture of constructive semi-

groups with apartness for both (classical) algebraists and those applying algebraic knowl-
edge. This paper will shed light on our results obtained over the last decades.
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“In our own time, algebra has become the most rarefied a nd d emanding o f a ll m ental d isciplines, whose 
objects are abstractions of abstractions of abstractions, yet whose results have a power and beauty that are all 
too little known outside the world of professional mathematicians. Most amazing, most mysterious of all, these 
ethereal mental objects seem to contain, within their nested abstractions, the deepest, most fundamental secrets of 
the physical world.” (J. Derbyshire, [1])

1 INTRODUCTION

An algebraic structure is a set (called carrier set or underlying set) with one or more finitary operations 
defined on i t (called basic operation(s)) that satisfies a list of  ax ioms. Centred around an  algebraic 
structure are notions of: substructure, homomorphism, isomorphism, congruence, quotient structure. 
A mapping between two algebraic structures of the same type, that preserves the operation(s) of 
the structures is called homomorphism. The formulation of homomorphic images (together with 
substructures and direct products) is one of the principal tools used to manipulate algebraic structures. 
In the study of homomorphic images of an algebraic structure, a lot of help comes from the notion 
of a quotient structure, which captures all homomorphic images, at least up to isomorphism. On the 
other hand, homomorphism is a concept which goes hand in hand with congruences. The relationship 
between quotients, homomorphisms and congruences is described by the celebrated isomorphism 
theorems, which are a general and important foundational part of abstract and universal algebras.

Algebraic structures have wide ranging applications in many mathematical, computer science and 
engineering disciplines. This provides sufficient motivation to researchers to review various concepts 
and results. So, there are algebraic structures in time, computation and control systems. The structural 
approach to algebra has provided opportunities for:
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• already solved as well as open problems to give solutions in a more efficient and elegant way,

• appearance of new directions in research in the area in particular, and mathematics in general.

It can be read that “algebra can seem abstract and remote, utterly disconnected from daily life”.
Axioms may model abstract worlds with no immediate connection to the physical world - the fact
which may change over time. Boolean algebra, hardly recognized by the mathematical community
when it was developed, is nowadays known as the foundation for most of computer science. Linear
algebra is useful in all kinds of applications and situations, such as: the feature-based classification
techniques in machine learning and the method for face recognition. Quotient structures have many
applications within informatics - in particular in modeling and in automated program analysis. More
examples of applications of different algebraic contents within informatics can be found in [2]. Even
more, as it is also written in [2], algebraic structures (semigroups, groups, semirings, rings, fields,
vector spaces, ...) “provide a very mature mathematical framework in which we may formulate and
engineer abstractions through concepts such as homomorphism (i.e., the preservation of structure),
substructures (e.g., subgroups in a case of groups), and quotient structures (e.g., the natural numbers
modulo a prime number). [...] Inductive approaches and algebraic thinking are combined in the in
order to illustrate the art of perfect modeling.” More about applications of algebraic structures and,
in particular, semigroups can be found in [3].

G. Birkhoff, [4] wrote: “I do not wish to exaggerate the importance for computer science of
lattices (including Boolean algebras), or of binary groups and fields. All of these have a quite special
structure. A much more general class of algebraic systems is provided by semigroups, which are
indeed basic for a great part of algebra”. Working within the classical theory of semigroups several
years ago we decided to change the classical background with the constructive one. Our theory is
partly inspired by the classical case, but it is distinguished from it in two significant aspects: we
use intuitionistic logic rather than classical throughout; our work is based on the notion of apartness
(between elements of the set, and, later, between elements and its subsets).

The theory of constructive semigroups with apartness is a new approach to semigroup theory
and not a new class of semigroups. It presents a semigroup facet of some relatively well established
direction of constructive mathematics which, to the best of our knowledge, has not yet been considered
within the semigroup community. Inspired by results obtained in interactive theorem proving the
approach of formal verifications (more in Mitrović, Hounkonnou and Baroni, 2021, [5]), a new
constructive algebraic theory known as the theory of semigroups with apartness was developed by
Mitrović and co-authors: Hounkonnou, Baroni, Crvenković, Romano, Silvestrov - see: [6], [7], [8],
[5], [9], [10].

Results which will be presented are based on the ones published in [5], [8]. and shortly, on the
work in progress Mitrović and Hounkonnou, [11]. More background on constructive mathematics can
be found in [12], [13], [14], [15]. The standard reference for constructive algebra is [16]. Examples
of applications of these theoretical concepts can be found in [5], [8].

The present paper is by no means an attempt to give a complete overview of our existing results
to date.

2 FUNDAMENTAL CONCEPTS

All material presented in this section is broad rather than deep, and it is not intended to be comprehen-
sive. It is heavily based on the treatments in other standard constructive mathematics books, such as,
for example, [12], [13], [14], [15]. The main novelty is in the selection and arrangement of material.



Constructive Semigroups with Apartness: A Comprehensible Survey for... 49

2.1 Constructive mathematics
“Constructive mathematics is based on the belief that mathematics can have real meaning only if its
concepts can be constructed by the human mind, an issue that has divided mathematicians for more
than a century”, [17].

It is surely impossible to arrive at a clear conception of present-day constructive mathematics
without knowing something of its origins. Historical development of constructive mathematics is a
subject in its own right. For the purpose of this paper, we will go as briefly as possible through it.
Since the time of Plato it has been generally believed that mathematics exists independently of man’s
knowledge and the work of the mathematician is to discover that truth. In the nineteenth century
Leopold Kronecker had advocated a constructive approach to mathematics, i.e. a point of view that
the work of the mathematician is to invent mathematics.

“The question of whether mathematics is discovered or invented is not an idle one. Depending on
their answer to it mathematicians can have radically divergent views on how the work of mathematics
should be conducted”, [17]. Anyway, the story of modern constructivism really began with the publi-
cation of Brouwer’s the doctoral thesis “On the Foundations of Mathematics” from 1907. According
to Brouwer: mathematical objects are free creations of the human mind, it is independent of both
logic and language, and a mathematical object exist when it is constructed. Following H. Wang [18],
we may say that constructive mathematics is a “mathematics of doing” while classical mathematics is
a “mathematics of being.”

In conclusion, classical and constructive mathematics “should not be treated as rival domains
among which one has to choose one (for life), but they should rather be treated as useful reports about
a same grand structure which can help us to construct a whole picture that would be more adequate
than each taken alone”, as written by G. Sommaruga, [19]. Or, “they complement each other, and it
would be doing oneself violence to renounce one or other”, P. Bernays, [20].

2.1.1 Why constructive mathematics?

“Why constructive mathematics?”, “Why constructivity?”, “Why constructivism?” Constructivity and
constructivism are generally considered as two altogether different notions. Whereas constructivity
refers to a constructive practice of mathematics and logic, constructivism shares with all the other
’isms’ a certain ideological connotation, [21].

We, further, agree with A. S. Troelstra, D. van Dalen, [15], in presenting mathematics containing
material which is mathematicaly interesting regardless any philosophical bias. So, “Not to put too
fine a point on it, let us identify constructive mathematics and constructivity”, [21].

Two fundamental conditions for the constructivist trend are:

• The notion of ‘truth’ is not taken as primitive; rather, a proposition is considered true only
when a proof for the proposition is produced.

• The notion of ’existence’ is taken to be constructibility: when an object is proved to exist, the
proof also exhibits how to find it.

Such a belief naturally leads to a rejection of existence proofs by contradiction, and a consequent
scepticism about the meaning of many of the theorems of classical mathematics. If we accept
that existence should always be interpreted constructively, then we are forced to dispense with the
unrestricted use of the logical law of excluded middle, LEM.

Throughout this paper constructive mathematics, CM, is viewed as mathematics done using
intuitionistic logic.
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2.1.2 (Informal) Intuitionistic logic

The role of logic in mathematics (and computer science) is two-fold - a tool for applications in both
areas, and a technique for laying the foundations.

Constructive mathematics is not based on a prior notion of logic; rather, our interpretations of
the logical connectives and quantifiers grow out of our mathematical intuition and experience. The
point of departure is that a statement 𝜑 is considered to be true (or to hold) if we have a proof for it.
By a proof we mean a mathematical construction that establishes 𝜑, not a deduction in some formal
system. From the classical mathematics, CLASS, point of view, mathematics consists of a preexisting
mathematical truth. From a constructive viewpoint, the judgement 𝜑 is true means that there is a
proof of 𝜑. In conclusion, “In actual building of constructive mathematics we do not need logic;
nevertheless we find it convenient to use logical symbolism”, [15].

Constructive reasoning differs from its classical counterpart in that it attaches a stronger meaning
to some of the logical operators.

In the history of ideas it often looks as if a certain idea has to be discovered several times,
by different people, before it really enters into the ’consciousness’ of science. In what follows an
idea, connected with the constructivistic trend in the foundations of mathematics, developed within
mathematical logic will be given the so-called proof interpretation of intuitionistic logic, also known
as the Brouwer-Heyting-Kolmogorov (BHK-)interpretation.

The BHK-interpretation gives each of the logical symbols ∧, ∨, ⇒, ¬, ∀, ∃ a distinct meaning.
Classically, the propositional connectivities can be defined from ∧ and ¬, while ∃ can be defined
from ∀ and ¬, so ∨, ⇒ and ∃ are unnecessary. Intuitionistic logic, in contrast, makes full use of the
expressive power of the formal language.

More on intuitionistic logics and BHK-interpreation can be found, for example, in [13] or [15].

2.1.3 Constructivity and too many principles

In constructive mathematics there are a number of competing notions of constructivity, i.e. there
are various incompatible systems of constructive mathematics. The main exponents of constructivity
are Brouwer’s intuitionistic mathematics, INT, the constructive recursive mathematics of the Russian
school of Markov, RUSS, Bishop’s constructive mathematics, BISH. In addition there were (and still
are) a number of minor ones with a specific constructive program, [21]. Every form has intuitionistic
logic at its core. Different schools have different additional principles or axioms given by the
particular approach to constructivism. For example, the notion of an algorithm or a finite routine is
taken as primitive in INT and BISH, while RUSS operates with a fixed programming language and
an algorithm is a sequence of symbols in that language, [5]. Constructivism in the broad sense is by
no means homogeneous. Even the views expressed by different representatives of one “school”, or by
a single mathematician at different times are not always homogeneous.

Throughout this chapter constructive mathematics is understood as Bishop-style mathematics,
BISH. The Bishop-style of constructive mathematics enables one to interpret the results both in
classical mathematics, CLASS, and other varieties of constructivism.

2.2 Constructively valid arguments
Following Bishop, every classical theorem presents the challenge: find a constructive version with
a constructive proof. As stated by Bishop, [13]: “The extent to which good constructive substitutes
exist for the theorems of classical mathematics can be regarded as a demonstration that classical
mathematics has a substantial underpinning of constructive truth”. Following the standard literature
on constructive mathematics, the term “constructive theorem” refers to a theorem with a constructive
proof. A classical theorem that is proven in a constructive manner is a constructive theorem. This
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constructive version can be obtained by strengthening the conditions or weakening the conclusion of
the theorem. Although constructive theorems might look like the corresponding classical versions,
they often have more complicated hypotheses and proofs. There are, often, several constructively
different versions of the same classical theorem, see, for example, [5] . Some classical theorems are
neither provable nor disprovable, that is, they are independent of BISH. For some classical theorems
it is shown that they are not provable constructively.

To the end of this section, following [5], we introduce the idea of omniscience principle and
of Brouwerian counterexample. The law of excluded middle, LEM, can be regarded as the main
source of nonconstructivity. It was Brouwer, [22], who first observed that LEM was extended without
justification to statements about infinite sets. Several consequences of LEM are not accepted in
Bishop’s constructivism. We will mention two such nonconstructive principles - the ones which will
be used latter.

• The limited principle of omniscience, LPO: for each binary sequence (𝑎𝑛)𝑛≥1,
either 𝑎𝑛 = 0 for all 𝑛, or else there exists 𝑛 with 𝑎𝑛 = 1.

• Markov’s principle, MP: For each binary sequence (𝑎𝑛)𝑛≥1, if it is impossible that
𝑎𝑛 = 0 for all 𝑛, then there exists 𝑛 with 𝑎𝑛 = 1.

Within constructive mathematics, a statement 𝑃, as in classical mathematics, can be disproved by
giving a counterexample. However, it is also possible to give a Brouwerian counterexample to show
that the statement is nonconstructive. A Brouwerian counterexample to a statement 𝑃 is a constructive
proof that 𝑃 implies some nonconstructive principle, such as, for example, LEM, and its weaker
versions LPO, MP. It is not a counterexample in the true sense of the word - it is just an indication
that 𝑃 does not admit a constructive proof.

2.3 INFORMAL FOUNDATIONS OF CM
In one sense, the purpose of a foundation of mathematics is to describe, or otherwise provide for, the
objects of mathematics, [19]. In what follows within this section the constructive view in the Bishop’s
style of the fundamental notions will be given.

2.3.1 Primitive notions

The set of positive numbers and algorithm (construction) are two primitive notions, and, as such, they
cannot be defined. The cornerstones for BISH include the notions of sets, functions and relations.

The set of positive numbers is regarded as a basic set, and it is assumed that the positive numbers
have the usual algebraic and order properties, including mathematical induction. Following [23],
“The primary concern of mathematics is number, and this means the positive integers. We feel about
number the way Kant felt about space. The positive integers and their arithmetic are presupposed by
the very nature of our intelligence and, we are tempted to believe, by the very nature of intelligence in
general. The development of the positive integers from the primitive concept of the unit, the concept
of adjoining a unit, and the process of mathematical induction carries complete conviction”.

The notion of algorithm (algorithmic process, finite routine, rule, mechanical operation) is
primitive. The idea that the notion of an algorithm is primitive has also been advanced by the Russian
mathematicians V. A. Uspenskii and A. L. Semenov, [24]: “The concept of algorithm like that of
set and of natural number is a such a fundamental concept that it cannot be explained through other
concepts and should be regarded as [an]undefinable one”, (source [16]).
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2.3.2 Informal constructive set theory

Constructive set theory is a variant of classical set theory which uses intuitionistic logic.
Constructive set theory provides a standard set theoretical framework for development of con-

structive mathematics in the style of Errett Bishop and one of several such frameworks for constructive
mathematics that have been considered. In the words of P. Aczel, M. Rathjen, [25]: “There are just sets
as in classical set theory. This means that mathematics in constructive set theory can look very much
like ordinary ordinary classical mathematics. The advantage of this is that the ideas, conventions and
practice of the set theoretical presentation of ordinary mathematics can be used also in set theoretical
development of constructive mathematics, provided that a suitable discipline is adhered to. In the first
place only the methods of logical reasoning available in intuitionistic logic should be used”.

Contrary to the classical case, a set exists only when it is defined. A set (𝑆, =) is considered
defined when we have

(a) said what must be done to construct a member of 𝑆;

(b) said what must be done to prove members of 𝑆 equal;

(c) proved that equality = on 𝑆 as defined in (b) is an equivalence relation.

The issue of equality seems to get more attention in constructive mathematics than it does in classical
mathematics. In the customary approach to set theory, one does not regard a set as “coming equppied”
with a special equality relation of its own. There is the “universal” or “absolute” equality relation
on the entire universe. In constructive mathematics, no such thing is assumed: we have only those
equality relations which we can construct.

In some (constructive) mathematics’ books one can find that the use of equivalence relations
rather than intensional equality (that is, identity of description) in classical mathematics often goes
unnoticed. For example, we call the rational numbers 1

2 and 3
6 equal, even though, strictly speaking,

they are equivalent and not intensionally identical.
As usual, we write 𝑥 ∈ 𝑆 to signify that 𝑥 is an element of the set 𝑆, and 𝑥 ∉ 𝑆 instead of ¬(𝑥 ∈ 𝑆).
A property 𝑃, which is applicable to the elements of a set 𝑆, determines a subset 𝑋 of 𝑆 denoted

by 𝑋 = {𝑥 ∈ 𝑆 : 𝑃(𝑥)}. Clearly, two elements of a subset of 𝑆 are equal if and only if they are equal
as elements of 𝑆. If 𝑋 is a subset of 𝑆, then we write 𝑋 ⊆ 𝑆. Furthermore, we will be interested only
in properties 𝑃(𝑥) which are extensional in the sense that for all 𝑥1, 𝑥2 ∈ 𝑆 with 𝑥1 = 𝑥2, 𝑃(𝑥1) and
𝑃(𝑥2) are equivalent. Informally, it means that “it does not depend on the particular description by
which 𝑥 is given to us”.

A set (𝑆, =) is an inhabited set if we can construct an element of 𝑆. The distinction between the
notions of a nonempty set and an inhabited set is a key in constructive set theories. While an inhabited
set is nonempty, the converse does not hold in general.

The notion of equality of different sets is not defined. The only way in which elements of two
different sets can be regarded as equal is by requiring them to be subsets of a third set.

Given two sets (𝑆, =𝑆) and (𝑇, =𝑇 ), it is permissible to construct the set (𝑇𝑆 , =) of mappings
between them. A mapping 𝑓 : 𝑆 → 𝑇 is an algorithm which produces an element 𝑓 (𝑥) of 𝑇 when
applied to an element 𝑥 of 𝑆, which is extensional, that is

∀𝑥,𝑦∈𝑆 (𝑥 =𝑆 𝑦 ⇒ 𝑓 (𝑥) =𝑇 𝑓 (𝑦)).

As usual, equality between two elements 𝑓 and 𝑔 from 𝑇𝑆 is defined by

𝑓 = 𝑔
def⇔ ∀𝑥∈𝑋 ( 𝑓 (𝑥) = 𝑔(𝑥)).

Mappings 𝑓 : 𝑆 → 𝑇 and 𝑔 : 𝑇 → 𝑈 can be composed, giving a mapping 𝑓 ◦ 𝑔 : 𝑆 → 𝑈 defined
by ( 𝑓 ◦ 𝑔) (𝑥) = 𝑓 (𝑔(𝑥)), 𝑥 ∈ 𝑆.
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Lemma 1 Composition of mappings is associative, i.e.

𝑓 ◦ (𝑔 ◦ ℎ) = ( 𝑓 ◦ 𝑔) ◦ ℎ

whenever the compositions are well defined.

Corollary 1 (𝑆𝑆 , =; ◦) is a semigroup.

A mapping 𝑓 : 𝑆 → 𝑇 is:

• onto 𝑆 or surjection: ∀𝑦∈𝑇 ∃𝑥∈𝑆 (𝑦 =𝑇 𝑓 (𝑥));
• one-one or injection: ∀𝑥,𝑦∈𝑆 ( 𝑓 (𝑥) =𝑇 𝑓 (𝑦) ⇒ 𝑥 =𝑆 𝑦);
• bijection between 𝑆 and 𝑇 : it is a one-one and onto.

The cartesian product of two sets (𝑆, =𝑆) and (𝑇, =𝑇 ) is the set (𝑆 × 𝑇, =𝑆×𝑇 ) defined by

𝑆 × 𝑇 def
= {(𝑥, 𝑦) : 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇}

(𝑥, 𝑦) =𝑆×𝑇 (𝑢, 𝑣) def⇔ 𝑥 =𝑆 𝑢 ∧ 𝑦 =𝑇 𝑣.

In what follows of particular interest will be the cartesian product of a set 𝑆 by itself, 𝑆 × 𝑆.
An inhabited subset 𝜌 of 𝑆 × 𝑆, or, equivalently, a property applicable to elements of 𝑆 × 𝑆, is

called a binary relation on 𝑆. In general, there are many properties that binary relations may satisfy
on a given set:

(R) reflexive: (𝑥, 𝑥) ∈ 𝜌
(IR) irreflexive: ¬((𝑥, 𝑥) ∈ 𝜌)
(S) symmetric : (𝑥, 𝑦) ∈ 𝜌 ⇒ (𝑦, 𝑥) ∈ 𝜌
(T) transitive: (𝑥, 𝑦) ∈ 𝜌 ∧ (𝑦, 𝑧) ∈ 𝜌 ⇒ (𝑥, 𝑧) ∈ 𝜌

(coT) co-transitive: (𝑥, 𝑦) ∈ 𝜌 ⇒ (𝑥, 𝑧) ∈ 𝜌 ∨ (𝑧, 𝑦) ∈ 𝜌

Inherited from classical mathematics, CLASS, they “play game” under constructive rules.
Compared with CLASS, the situation for inequality is more complicated. There are different

types of inequalities (denial inequality, diversity, apartness, tight apartness - to mentione few), some
of them completely independent, which only in CLASS are equal to one standard inequality. So, in
constructive mathematics inequality becomes a “basic notion in intuitionistic axiomatics”.

An inequality relation is often denoted by ≠. A tuple (𝑆, =𝑆 ,≠𝑆) is called a set with inequality.
It has to be emphasized that ≠ is not, in general, the negation of =. The interpretation of the symbol
𝑥 ≠ 𝑦 depends on the context. Going through the literature on constructive mathematics, an inequality
relation is often considered to be a binary relation that is irreflexive and symmetric.

Specific types of inequality relations include:

• the denial inequality: 𝑥 ≠ 𝑦
def⇔ ¬(𝑥 = 𝑦);

• a tight inequality: an inequality with 𝑥 = 𝑦 ⇒ 𝑥 = 𝑦;

• an apartness relation: co-transitive inequality ((IR), (S), (coT));

• a tight apartness: an apartness with ¬ (𝑥#𝑦) ⇒ ¬(𝑥 ≠ 𝑦).
One of the main features of constructive mathematics is that the concepts that are equivalent in the
presence of LEM, need not be equivalent any more. For example, we distinguish nonempty and
inhabited sets, several types of inequalities, etc. We have to be careful which of several classically
equivalent definitions we use.
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3 Set with apartness
There are many decisions a mathematician must make when deciding to replace classical logic with
intuitionisitic logic. Let us mention some of them. First of all - choice of variant of constructive
mathematics. Our choice was the Errett Bishop - style constructive mathematics, BISH.

Going through the literature there are several variants of what is considered to be a set with
apartness - depending on the relations between equality and apartness defined on a set. Our choice -
our starting structure - is a set with apartness (𝑆, =, #) where

• equality and apartness are basic notions,
• equality and apartness are independent of each other,
• apartness is not, in general, tight.

Such a choice was and is a novelty within constructive circles.

3.1 Basic concepts
Let (𝑆, =) be an inhabited set. By an apartness on 𝑆 we mean a binary relation # on 𝑆 which satisfies
the axioms of irreflexivity, symmetry and cotransitivity:
(Ap1) ¬(𝑥#𝑥)
(Ap2) 𝑥#𝑦 ⇒ 𝑦#𝑥,
(Ap3) 𝑥#𝑧 ⇒ ∀𝑦 (𝑥#𝑦 ∨ 𝑦#𝑧).
If 𝑥#𝑦, then 𝑥 and 𝑦 are different, or distinct. Roughly speaking, 𝑥 = 𝑦 means that we have a proof that
𝑥 equals 𝑦 while 𝑥#𝑦 means that we have a proof that 𝑥 and 𝑦 are different. Therefore, the negation of
𝑥 = 𝑦 does not necessarily imply that 𝑥#𝑦 and vice versa: given 𝑥 and 𝑦, we may have neither a proof
that 𝑥 = 𝑦 nor a proof that 𝑥#𝑦.

The apartness on a set 𝑆 is tight if
(Ap4) ¬(𝑥#𝑦) ⇒ 𝑥 = 𝑦.
Apartness is tight just when ¬(𝑥#𝑦) ⇔ 𝑥 = 𝑦.

By extensionality, we have

(Ap5) 𝑥#𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥#𝑧,

the equivalent form of which is

(Ap5’) 𝑥#𝑦 ∧ 𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′ ⇒ 𝑥′#𝑦′.

A set with apartness (𝑆, =, #) is the starting point for our considerations, and will be simply
denoted by 𝑆.

The existence of an apartness relation on a structure often gives rise to an apartness relation
on another structure. For example, given two sets with apartness (𝑆, =𝑆 , #𝑆) and (𝑇, =𝑇 , #𝑇 ), it is
permissible to construct the set of mappings between them. Let 𝑓 : 𝑆 → 𝑇 be a mapping between sets
with apartness 𝑆 and𝑇 . An important property applicable to mapping 𝑓 is that of strong extensionality.
Namely, a mapping 𝑓 : 𝑆 → 𝑇 is a strongly extensional mapping, or, for short, an se-mapping, if

∀𝑥,𝑦∈𝑆 ( 𝑓 (𝑥)#𝑇 𝑓 (𝑦) ⇒ 𝑥#𝑆𝑦).

An se-mapping 𝑓 is:
- an se-surjection if it is surjective;
- an se-injection if it is injective;
- an se-bijection if it is bijective;
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- apartness injective, shortly a-injective: ∀𝑥,𝑦∈𝑆 (𝑥#𝑆 𝑦 ⇒ 𝑓 (𝑥)#𝑇 𝑓 (𝑦));
- apartness bijective: a-injective, se-bijective.
Given the two sets with apartness 𝑆 and 𝑇 it is permissible to construct the set of ordered pairs

(𝑆 × 𝑇, =, #) of these sets defining apartness by

(𝑠, 𝑡) # (𝑢, 𝑣) def⇔ 𝑠 #𝑆 𝑢 ∨ 𝑡 #𝑇 𝑣.

3.2 Distinguishing subsets
The presence of apartness implies the appearance of different types of substructures connected to it.
Following [14], we define the relation ⊲⊳ between an element 𝑥 ∈ 𝑆 and a subset 𝑌 of 𝑆 by

𝑥 ⊲⊳ 𝑌
def⇔ ∀𝑦∈𝑌 (𝑥#𝑦).

A subset 𝑌 of 𝑆 has two natural complementary subsets: the logical complement of 𝑌

¬𝑌 def
= {𝑥 ∈ 𝑆 : 𝑥 ∉ 𝑌 },

and the apartness complement or, shortly, the a-complement of 𝑌

∼ 𝑌 def
= {𝑥 ∈ 𝑆 : 𝑥 ⊲⊳ 𝑌 }.

Denote by �̃� the a-complement of the singleton {𝑥}. Then it can be easily shown that 𝑥 ∈ ∼ 𝑌 if and
only if 𝑌 ⊆ �̃�. If the apartness is not tight we can find subsets 𝑌 with ∼ 𝑌 ⊂ ¬𝑌 . (More in [5])

The complements are used for the classification of subsets of a given set. A subset 𝑌 of 𝑆 is
• a detachable subset in 𝑆 or, in short, a d-subset in 𝑆 if

∀𝑥∈𝑆 (𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ¬𝑌 );

• a strongly detachable subset of 𝑆, shortly an sd-subset of 𝑆, if

∀𝑥∈𝑆 (𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ∼𝑌 ),

• a quasi-detachable subset of 𝑆, shortly a qd-subset of 𝑆, if

∀𝑥∈𝑆 ∀𝑦∈𝑌 (𝑥 ∈ 𝑌 ∨ 𝑥#𝑦).

Questions which naturally arise here are: For which type of subset of a set with apartness do we
have equality between its two complements? What kind of relationships exist between distinguished
subsets? It turns out that the answers initiated a development of order theory for sets and semigroups
with apartness.

Theorem 1 Let 𝑌 be a subset of 𝑆. Then:

(i) Any sd-subset is a qd-subset of 𝑆. The converse implication entails LPO.

(ii) Any qd-subset 𝑌 of 𝑆 satisfies ∼ 𝑌 = ¬𝑌 .

(iii) If any qd-subset is a d-subset, then LPO holds.

(iv) If any d-subset is a qd-subset, then MP holds.

(v) Any sd-subset is a d-subset of 𝑆. The converse implication entails MP.

(vi) If any subset of a set with apartness 𝑆 is a qd-subset, then LPO holds.
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Proof. (i). Let 𝑌 be an sd-subset of 𝑆. Then, applying the definition and logical axiom we have

∀𝑥∈𝑆 (𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ∼𝑌 ) ⇔ ∀𝑥∈𝑆 (𝑥 ∈ 𝑌 ∨ ∀𝑦∈𝑌 (𝑥#𝑦))
⇒ ∀𝑥∈𝑆 ∀𝑦∈𝑌 (𝑥 ∈ 𝑌 ∨ 𝑥#𝑦).

In order to prove the second part of this statement, we consider the real number set R with the
usual (tight) apartness and the subset 𝑌 = 0̃. Then, for each real number 𝑥 and for each 𝑦 ∈ 𝑌 it
follows, from the co-transitivity of #, either 𝑦#𝑥 or 𝑥#0, that is, either 𝑥 ∈ 𝑌 or 𝑥#𝑦. Consequently, 𝑌
is a qd-subset of R. On the other hand, if 𝑌 is an sd-subset of R, then for each 𝑥 ∈ R, either 𝑥 ∈ 𝑌 or
𝑥 ∈∼ 𝑌 . In the former case, 𝑥#0 and in the latter 𝑥 = 0, hence LPO holds.

(ii). Let 𝑌 be a qd-subset, and let 𝑎 ∈ ¬𝑌 . By assumption we have

∀𝑥∈𝑆 ∀𝑦∈𝑌 (𝑥 ∈ 𝑌 ∨ 𝑥#𝑦),

so substituting 𝑎 for 𝑥, we get ∀𝑦∈𝑌 (𝑎 ∈ 𝑌 ∨ 𝑎#𝑦), and since, by assumption, ¬(𝑎 ∈ 𝑌 ), it follows
that 𝑎#𝑦 for all 𝑦 ∈ 𝑌 . Hence 𝑎 ∈∼ 𝑌 . See also [10].

(iii). Let 𝑆 be the real number set R with the usual apartness #. As in the proof of (i), consider
the qd-subset 0̃ of R. If 0̃ is a d-subset of R, then 𝑥 ∈ 0̃ or ¬(𝑥 ∈ 0̃), for all real numbers 𝑥. In the
latter case ¬(𝑥#0), which is equivalent to 𝑥 = 0. Thus we obtain the property ∀𝑥∈R (𝑥#0 ∨ 𝑥 = 0)
which, in turn, is equivalent to LPO.

(iv). Consider a real number 𝑎 with ¬(𝑎 = 0) and let 𝑆 be the set {0, 𝑎} endowed with the usual
apartness of R. For 𝑌 = {0}, since 0 ∈ 𝑌 and 𝑎 ∈ ¬𝑌, it follows that 𝑌 is a d-subset of 𝑆. On the other
hand, if 𝑌 is a qd-subset of 𝑆, then 𝑎#0. It follows that for any real number with ¬(𝑎 = 0), 𝑎#0 which
entails the Markov Principle, MP.

(v). The first part follows immediately from (i), (ii) and the definition of d-subsets. The converse
follows from (i) and (iv).

(vi). Consider again R with the usual apartness and define 𝑌 = {0}. If 𝑌 is a qd-subset of R, then
for all 𝑥 ∈ R, we have 𝑥 = 0 or 𝑥#0, hence LPO holds. □

For all subsets 𝑌 of the set with apartness 𝑆 for which two distinguished complements coincide,
we will adopt the following notation:

𝑌𝑐𝑌𝑐
𝑌𝑐 =∼ 𝑌 = ¬𝑌 .

3.3 Co-quasiorders
Let (𝑆 × 𝑆, =, #) be a set with apartness. An inhabited subset of 𝑆 × 𝑆, or, equivalently, a property
applicable to the elements of 𝑆 × 𝑆, is called a binary relation on 𝑆. Let 𝛼 be a relation on 𝑆. Then

(𝑎, 𝑏) ⊲⊳ 𝛼 ⇔ ∀(𝑥,𝑦) ∈𝛼 ((𝑎, 𝑏) # (𝑥, 𝑦)),

for any (𝑎, 𝑏) ∈ 𝑆 × 𝑆. The apartness complement of 𝛼 is the relation

∼ 𝛼 = {(𝑥, 𝑦) ∈ 𝑆 × 𝑆 : (𝑥, 𝑦) ⊲⊳ 𝛼}.

In general, we have ∼ 𝛼 ⊆ ¬𝛼.
The relation 𝛼 defined on a set with apartness 𝑆 is

• irreflexive if ∀𝑥∈𝑆 ¬((𝑥, 𝑥) ∈ 𝛼);

• strongly irreflexive if (𝑥, 𝑦) ∈ 𝛼 ⇒ 𝑥#𝑦;

• co-transitive if (𝑥, 𝑦) ∈ 𝛼 ⇒ ∀𝑧∈𝑆 ((𝑥, 𝑧) ∈ 𝛼 ∨ (𝑧, 𝑦) ∈ 𝛼).
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It is easy to check that a strongly irreflexive relation is also irreflexive. For a tight apartness, the two
notions of irreflexivity are classically equivalent but not so constructively. More precisely, if each
irreflexive relation were strongly irreflexive then MP would hold. In the constructive order theory,
the notion of co-transitivity, that is the property that for every pair of related elements, any other
element is related to one of the original elements in the same order as the original pair is a constructive
counterpart to classical transitivity

A relation 𝜏 defined on a set with apartness 𝑆 is a

• weak co-quasiorder if it is irreflexive and co-transitive,

• co-quasiorder if it is strongly irreflexive and co-transitive.

Even if the two classically (but not constructively) equivalent variants of a co-quasiorder are construc-
tive counterparts of a quasiorder in the case of (a tight) apartness, the stronger variant, co-quasiorder,
is, of course, the most appropriate for a constructive development of the theory of semigroups with
apartness we develop, which will be evident in the continuation of this paper. The weaker variant,
that is, weak co-quasiorder, could be relevant in analysis. (More in [5])

A co-quasiorder has the following important properties:

Proposition 1 Let 𝜏 be a co-quasiorder on 𝑆. Then:

(i) 𝜏 is a qd-subset of 𝑆 × 𝑆;

(ii) ∼ 𝜏 = ¬ 𝜏 = 𝜏𝑐;

(iii) 𝜏𝑐 is a quasiorder on 𝑆.

Proof.
(i). Let (𝑥, 𝑦) ∈ 𝑆 × 𝑆. Then, for all (𝑎, 𝑏) ∈ 𝜏,

(𝑎, 𝑥) ∈ 𝜏 ∨ (𝑥, 𝑏) ∈ 𝜏 ⇒ (𝑎, 𝑥) ∈ 𝜏 ∨ (𝑥, 𝑦) ∈ 𝜏 ∨ (𝑦, 𝑏) ∈ 𝜏
⇒ 𝑎#𝑥 ∨ (𝑥, 𝑦) ∈ 𝜏 ∨ 𝑦#𝑏
⇒ (𝑎, 𝑏)#(𝑥, 𝑦) ∨ (𝑥, 𝑦)𝜏,

that is, 𝜏 is a qd-subset.
(ii). It follows from (i) and Theorem 1(ii).
(iii). Let 𝜏 be a strongly irreflexive relation on 𝑆. For each 𝑎 ∈ 𝑆, it can be easily proved that

(𝑎, 𝑎)#(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝜏. Thus, 𝜏𝑐 is strongly irreflexive.
If (𝑥, 𝑦), (𝑦, 𝑧) ∈ 𝜏𝑐 , then, by the definition of 𝜏𝑐 =∼ 𝜏, we have that (𝑥, 𝑦) ⊲⊳ 𝜏 and (𝑦, 𝑧) ⊲⊳ 𝜏.

For an element (𝑎, 𝑏) ∈ 𝜏, by co-transitivity of 𝜏, we have (𝑎, 𝑥) ∈ 𝜏 or (𝑥, 𝑦) ∈ 𝜏 or (𝑦, 𝑧) ∈ 𝜏 or
(𝑧, 𝑏) ∈ 𝜏. Thus (𝑎, 𝑥) ∈ 𝜏 or (𝑧, 𝑏) ∈ 𝜏, which implies that 𝑎#𝑥 or 𝑏#𝑧, that is (𝑥, 𝑧)#(𝑎, 𝑏). So,
(𝑥, 𝑧) ⊲⊳ 𝜏 and (𝑥, 𝑧) ∈ ∼ 𝜏 = 𝜏𝑐 . Therefore, 𝜏𝑐 is transitive. □

3.4 Apartness isomorphism theorems
A quotient structure does not have, in general, a natural apartness relation. For most purposes,
we overcome this problem using a co-equivalence, that is symmetric co-quasiorder, instead of an
equivalence. Existing properties of a co-equivalence guarantee that its a-complement is an equivalence
and that the quotient set of that equivalence will inherit an apartness. The following notion will be
necessary. For any two relations 𝛼 and 𝛽 on 𝑆 we can say that 𝛼 defines an apartness on S/𝛽 if we
have

(Ap 6) 𝑥𝛽 # 𝑦𝛽
def⇔ (𝑥, 𝑦) ∈ 𝛼.
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Lemma 2 If 𝛼 is a co-quasiorder and 𝛽 an equivalence on a set 𝑆, then (Ap 6) implies

(Ap 6′) ((x, a) ∈ 𝛽 ∧ (y, b) ∈ 𝛽) ⇒ ((x, y) ∈ 𝛼 ⇔ (a, b) ∈ 𝛼).

Proof. Indeed, let 𝛼 be a co-quasiorder and 𝛽 an equivalence on 𝑆 such that 𝛼 defines an apartness
on S/𝛽. Let (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝛽, i.e. 𝑎 ∈ 𝑥𝛽 and 𝑏 ∈ 𝑦𝛽, which, by the assumption, gives 𝑎𝛽 = 𝑥𝛽 and
𝑏𝛽 = 𝑦𝛽. If (𝑥, 𝑦) ∈ 𝛼, then, by (Ap6), 𝑥𝛽 # 𝑦𝛽, which, by (Ap5’), gives 𝑎𝛽 # 𝑏𝛽. By (Ap6) we have
(𝑎, 𝑏) ∈ 𝛼. In a similar manner, starting from (𝑎, 𝑏) ∈ 𝛼 we can conclude (𝑥, 𝑦) ∈ 𝛼. □

Let 𝛼 and 𝛽 be relations on 𝑆. Then 𝛼 is associated with 𝛽, 𝛼 ↫ 𝛽, if

𝛼 ↫ 𝛽
def⇔ ∀𝑥,𝑦,𝑧∈𝑆 ((𝑥, 𝑦) ∈ 𝛼 ∧ (𝑦, 𝑧) ∈ 𝛽 ⇒ (𝑥, 𝑧) ∈ 𝛼).

Theorem 2 Let 𝜅 be a co-equivalence on 𝑆. Then

(i) the relation 𝜅𝑐 is an equivalence on 𝑆 such that 𝜅 ↫ 𝜅𝑐;

(ii) (𝑆/𝜅𝑐 , =, #) is a set with apartness where

𝑎𝜅𝑐 = 𝑏𝜅𝑐 ⇔ (𝑎, 𝑏) ⊲⊳ 𝜅
𝑎𝜅𝑐 # 𝑏𝜅𝑐 ⇔ (𝑎, 𝑏) ∈ 𝜅;

(iii) The quotient mapping 𝜋 : 𝑆 → 𝑆/𝜅𝑐 , defined by 𝜋(𝑥) = 𝑥𝜅𝑐 , is an se-surjection.

Proof. (i). By the Proposition 1(iii), 𝜅𝑐 is a quasiorder on 𝑆. If 𝜅 is symmetric, then

(𝑥, 𝑦) ∈∼ 𝜅 ⇔ ∀(𝑎,𝑏) ∈𝜅 ((𝑥, 𝑦)#(𝑎, 𝑏))
⇒ ∀(𝑏,𝑎) ∈𝜅 ((𝑥, 𝑦)#(𝑏, 𝑎))
⇒ ∀(𝑏,𝑎) ∈𝜅 (𝑥#𝑏 ∨ 𝑦#𝑎)
⇒ ∀(𝑎,𝑏) ∈𝜅 ((𝑦, 𝑥)#(𝑎, 𝑏))
⇔ (𝑦, 𝑥) ∈∼ 𝜅 = 𝜅𝑐 .

Thus, 𝜅𝑐 is an equivalence.
Let (𝑥, 𝑦) ∈ 𝜅 and (𝑦, 𝑧) ∈ 𝜅𝑐 . Thus (𝑥, 𝑦) ∈ 𝜅 and (𝑦, 𝑧) ⊲⊳ 𝜅. By the co-transitivity of 𝜅 we have

(𝑥, 𝑧) ∈ 𝜅 or (𝑦, 𝑧) ∈ 𝜅. Thus (𝑥, 𝑧) ∈ 𝜅, and 𝜅 ↫ 𝜅𝑐 .
(ii). The strong irreflexivity of # is implied by its definition and by the strong irreflexivity of 𝜅.
Let 𝑎𝜅𝑐 # 𝑏𝜅𝑐 . Then (𝑎, 𝑏) ∈ 𝜅 implies that (𝑏, 𝑎) ∈ 𝜅, that is 𝑏𝜅𝑐 # 𝑎𝜅𝑐 .
Let 𝑎𝜅𝑐 # 𝑏𝜅𝑐 and 𝑢𝜅𝑐 ∈ 𝑆/𝜅𝑐 . Then (𝑎, 𝑏) ∈ 𝜅, and, by the co-transitivity of 𝜅, we have

(𝑎, 𝑢) ∈ 𝜅 or (𝑢, 𝑏) ∈ 𝜅. Finally we have that 𝑎𝜅𝑐#𝑢𝜅𝑐 or 𝑢𝜅𝑐 # 𝑏𝜅𝑐 , so the relation # is co-transitive.
(iii). Let 𝜋(𝑥)#𝜋(𝑦), i.e. 𝑥𝜅𝑐 # 𝑦𝜅𝑐 , which, by what we have just proved, means that (𝑥, 𝑦) ∈ 𝜅.

Then, by the strong irreflexivity of 𝜅, we have 𝑥#𝑦. So 𝜋 is an se-mapping.
Let 𝑎𝜅𝑐 ∈ 𝑆/𝜅𝑐 and 𝑥 ∈ 𝑎𝜅𝑐 . Then (𝑎, 𝑥) ∈ 𝜅𝑐 , i.e. 𝑎𝜅𝑐 = 𝑥𝜅𝑐 , which implies that 𝑎𝜅𝑐 = 𝑥𝜅𝑐 =

𝜋(𝑥). Thus 𝜋 is an se-surjection. □
Let 𝑓 : 𝑆 → 𝑇 be an se-mapping between sets with apartness. Then the relation

coker 𝑓 def
= {(𝑥, 𝑦) ∈ 𝑆 × 𝑆 : 𝑓 (𝑥)# 𝑓 (𝑦)}

defined on 𝑆 is called the co-kernel of 𝑓 .
Now, the First apartness isomorphism theorem for sets with apartness follows.

Theorem 3 Let 𝑓 : 𝑆 → 𝑇 be an se-mapping between sets with apartness. Then

(i) coker 𝑓 is a co-equivalence on 𝑆;
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(ii) coker 𝑓 ↫ ker 𝑓 and ker 𝑓 ⊆ (coker 𝑓 )𝑐;
(iii) (𝑆/ker 𝑓 , =, #) is a set with apartness, where

𝑎(ker 𝑓 ) = 𝑏(ker 𝑓 ) ⇔ (𝑎, 𝑏) ∈ ker 𝑓
𝑎(ker 𝑓 ) # 𝑏(ker 𝑓 ) ⇔ (𝑎, 𝑏) ∈ coker 𝑓 ;

(iv) the mapping 𝜑 : 𝑆/ker 𝑓 → 𝑇 , defined by 𝜑(𝑥(ker 𝑓 )) = 𝑓 (𝑥), is an a-injective se-injection
such that 𝑓 = 𝜑𝜋;

(v) if 𝑓 maps 𝑆 onto 𝑇 , then 𝜑 is an apartness bijection.

Proof. (i). The strong irreflexivity of coker 𝑓 is easy to prove: if (𝑥, 𝑦) ∈ coker 𝑓 , then 𝑓 (𝑥)# 𝑓 (𝑦)
and therefore 𝑥#𝑦.

If (𝑥, 𝑦) ∈ coker 𝑓 , then, by the symmetry of apartness in 𝑇 , 𝑓 (𝑦)# 𝑓 (𝑥); so (𝑦, 𝑥) ∈ coker 𝑓 .
If (𝑥, 𝑦) ∈ coker 𝑓 and 𝑧 ∈ 𝑆, i.e. 𝑓 (𝑥)# 𝑓 (𝑦) and 𝑓 (𝑧) ∈ 𝑇 , then either 𝑓 (𝑥)# 𝑓 (𝑧) or 𝑓 (𝑧)# 𝑓 (𝑦);

that is, either (𝑥, 𝑧) ∈ coker 𝑓 or (𝑧, 𝑦) ∈ coker 𝑓 . Hence coker 𝑓 is a co-equivalence on 𝑆.
(ii). Let (𝑥, 𝑦) ∈ coker 𝑓 and (𝑦, 𝑧) ∈ ker f. Then 𝑓 (𝑥)# 𝑓 (𝑦) and 𝑓 (𝑦) = 𝑓 (𝑧). Hence

𝑓 (𝑥)# 𝑓 (𝑧), that is, (𝑥, 𝑧) ∈ coker 𝑓 , and coker 𝑓 ↫ ker 𝑓 .
Now let (𝑥, 𝑦) ∈ ker 𝑓 , so 𝑓 (𝑥) = 𝑓 (𝑦). If (𝑢, 𝑣) ∈ coker 𝑓 , then, by the co-transitivity of coker 𝑓 ,

it follows that (𝑢, 𝑥) ∈ coker 𝑓 or (𝑥, 𝑦) ∈ coker 𝑓 or (𝑦, 𝑣) ∈ coker 𝑓 . Thus either (𝑢, 𝑥) ∈ coker 𝑓
or (𝑦, 𝑣) ∈ coker 𝑓 , and, by the strong irreflexivity of coker 𝑓 , either 𝑢#𝑥 or 𝑦#𝑣; whence we have
(𝑥, 𝑦)#(𝑢, 𝑣). Thus (𝑥, 𝑦) ⊲⊳ coker 𝑓 , or, equivalently (𝑥, 𝑦) ∈ (coker 𝑓 )𝑐 .

(iii). This follows from the definition of # in 𝑆/ker 𝑓 and (i).
(iv). Let us first prove that 𝜑 is well defined. Let 𝑥(ker 𝑓 ), 𝑦(ker 𝑓 ) ∈ 𝑆/ker 𝑓 be such that

𝑥(ker 𝑓 ) = 𝑦(ker 𝑓 ), that is, (𝑥, 𝑦) ∈ ker 𝑓 . Then we have 𝑓 (𝑥) = 𝑓 (𝑦), which, by the definition of
𝜑, means that 𝜑(𝑥(ker 𝑓 )) = 𝜑(𝑦(ker 𝑓 )).

Now let 𝜑(𝑥(ker 𝑓 )) = 𝜑(𝑦(ker 𝑓 )); then 𝑓 (𝑥) = 𝑓 (𝑦). Hence (𝑥, 𝑦) ∈ ker 𝑓 , which implies
that 𝑥(ker 𝑓 ) = 𝑦(ker 𝑓 ). Thus 𝜑 is an injection.

Next let 𝜑(𝑥(ker 𝑓 ))#𝜑(𝑦(ker 𝑓 )); then 𝑓 (𝑥)# 𝑓 (𝑦). Hence (𝑥, 𝑦) ∈ coker 𝑓 , which, by (iii),
implies that 𝑥(ker 𝑓 )#𝑦(ker 𝑓 ). Thus 𝜑 is an se-mapping.

Let 𝑥(ker 𝑓 )#𝑦(ker 𝑓 ); that is, by (iii), (𝑥, 𝑦) ∈ coker 𝑓 . So we have 𝑓 (𝑥)# 𝑓 (𝑦), which, by the
definition of 𝜑 means 𝜑(𝑥(ker 𝑓 ))#𝜑(𝑦(ker 𝑓 )). Thus 𝜑 is a-injective.

By the definition of composition of functions, Theorem 2, and the definition of 𝜑, for each 𝑥 ∈ 𝑆
we have

(𝜑𝜋) (𝑥) = 𝜑(𝜋(𝑥)) = 𝜑(𝑥(ker 𝑓 )) = 𝑓 (𝑥).
(v). Taking into account (iv), we have to prove only that 𝜑 is a surjection. Let 𝑦 ∈ 𝑇 . Then, as 𝑓

is onto, there exists 𝑥 ∈ 𝑆, such that 𝑦 = 𝑓 (𝑥). On the other hand 𝜋(𝑥) = 𝑥(ker 𝑓 ). By (iv), we now
have

𝑦 = 𝑓 (𝑥) = (𝜑 𝜋) (𝑥) = 𝜑(𝜋(𝑥)) = 𝜑(𝑥(ker 𝑓 )).
Thus 𝜑 is a surjection. □

4 SEMIGROUPS WITH APARTNESS
The theory of semigroups with apartness is a new approach to semigroup theory and not a new
class of semigroups. It presents a semigroup facet of some relatively well established direction of
constructive mathematics which, to the best of our knowledge, has not yet been considered within
the semigroup community. Starting our work on constructive semigroups with apartness, as pointed
out above, we faced an algebraically completely new area. What we had in “hand” at that moment
were the experience and knowledge coming from the classical semigroup theory, other constructive
mathematics disciplines, and computer science.
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4.1 Background and motivation
Constructive algebra is a relatively old discipline developed among others by L. Kronecker, van
der Waerden, A. Heyting. One of the main topics in constructive algebra is constructive algebraic
structures with the relation of (tight) apartness #, the second most important relation in constructive
mathematics. The principal novelty in treating basic algebraic structures constructively is that (tight)
apartness becomes a fundamental notion. (Consider the reals: we cannot assert that 𝑥−1 exists unless
we know that 𝑥 is apart from zero, i.e. |𝑥 | > 0 - constructively that is not the same thing as 𝑥 ≠ 0.
Furthermore, in fields 𝑥−1 exists only if 𝑥 is apart from 0, [12]). For more information on the history
of the topics see [15], [16].

Roughly, the descriptive definition of a structure with apartness includes two main parts:
- the notion of a certain classical algebraic structure is straightforwardly adopted;
- a structure is equipped with an apartness with standard operations respecting that apartness.
Proof assistants are computer systems which give a user the possibility to do mathematics on a

computer: from (numerical and symbolical) computing aspects to the aspects of defining and proving.
The latter ones, doing proofs, are the main focus. It is believed that, besides their great future
within the area of mathematics formalization, their applications within computer-aided modelling
and verification of the systems are and will be more important. One of the most popular, with the
intuitionistic background, is the proof assistant computer system Coq.

Coq is used for formal proofs of well known mathematical theorems, such as, for example, the
Fundamental Theorem of Algebra, FTA, [26]. For that purpose, the constructive algebraic hierar-
chy for Coq was developed, [27], consisting of constructive basic algebraic structures (semigroups,
monoids, groups, rings, fields) with tight apartness. In addition, all these structures are limited to
the commutative case. As it is noticed in [27] “that algebraic hierarchy has been designed to prove
FTA. This means that it is not rich as one would like. For instance, we do not have noncommutative
structure because they did not occur in our work”. We put noncommutative constructive semigroups
with non-tight apartness in the core of our study, proving first, of course, that such semigroups do
exist, [6].

A lot of ideas, notions and notations come from, for example, the constructive analysis, and,
especially, from the constructive topology, as well as from constructive theories of groups and rings
with tight apartness. Although the area of constuctive semigroups with apartness is still in its infancy,
we can already conclude that, similarly to the clasical case, the semigroups with apartness do not
much resemble groups and rings. In fact, they do not much resemble any other constructive algebraic
structures with apartness.

Following Bishop, we made “every effort to follow classical development along the lines suggested
by familiar classical theories or in all together new directions.” Although it is a pretty common point
of view that classical theorem becomes more enlightening when it is seen from the constructive
viewpoint, it can not be said that the theory of constructive semigroups with apartness aims at revising
the whole classical framework in nature. More on background and motivation can be found at [5].

4.2 Basic concepts
Given a set with apartness (𝑆, =, #), the tuple (𝑆, =, #, ·) is a semigroup with apartness if the binary
operation · is associative

(A) ∀𝑎,𝑏,𝑐∈𝑆 [(𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐)],
and strongly extensional

(S) ∀𝑎,𝑏,𝑥,𝑦∈𝑆 (𝑎 · 𝑥# 𝑏 · 𝑦 ⇒ (𝑎# 𝑏 ∨ 𝑥# 𝑦)).
As usual, we are going to write 𝑎𝑏 instead of 𝑎 · 𝑏. Example 1 provides a concrete instance of a
semigroup with apartness.
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Example 1 Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be a set with diagonal △𝑆 as the equality relation. If we denote
by 𝐾 = △𝑆 ∪ {(𝑎, 𝑏), (𝑏, 𝑎)}, then we can define an apartness # on 𝑆 to be (𝑆 × 𝑆) \𝐾 . Thus, (𝑆, =, #)
is a set with apartness. If we define multiplication on the set 𝑆 as

· a b c d e
g a b c d e
a b b d d d
b b b d d d
c d d c d c
d d d d d d
e d d c d c

then (𝑆, =, #; ·) is a semigroup with apartness. ⋄

For a given set with apartness 𝐴 we can construct a semigroup with apartness 𝑆 = 𝐴𝐴 in the
following way.

Theorem 4 Let 𝑆 be the set of all se-functions from 𝐴 to 𝐴 with the standard equality =

𝑓 = 𝑔 ⇔ ∀𝑥∈𝐴 ( 𝑓 (𝑥) = 𝑔(𝑥))

and apartness
𝑓 # 𝑔 ⇔ ∃𝑥∈𝐴 ( 𝑓 (𝑥)# 𝑔(𝑥)).

Then (𝑆, =, #, ◦) is a semigroup with respect to the binary operation ◦ of composition of functions.

Until the end of this paper, we adopt the convention that semigroup means semigroup with apartness.
Apartness from Theorem 4 does not have to be tight, [6].

Let 𝑆 and 𝑇 be semigroups with apartness. A mapping 𝑓 : 𝑆 → 𝑇 is a homomorphism if

∀𝑥,𝑦∈𝑆 ( 𝑓 (𝑥𝑦) = 𝑓 (𝑥) 𝑓 (𝑦)).

A homomorphism 𝑓 is
- an se-embedding if it is one-one and strongly extensional;
- an apartness embedding if it is a-injective se-embedding;
- an apartness isomorphism if it is apartness bijection and se-homomorphism.
Within CLASS, the semigroups can be viewed, historically, as an algebraic abstraction of the

properties of the composition of transformations on a set. Here we can formulate the constructive
Cayley’s theorem for semigroups with apartness as follows.

Theorem 5 Every semigroup with apartness se-embeds into the semigroup of all strongly extensional
self-maps on a set.

4.3 Apartness isomorphism theorems
Quotient structures are not part of BISH. A quotient structure does not, in general, have a natural
apartness relation. So, the Quotient Structure Problem - QSP is one of the very first problems which
has to be considered for any structure with apartness. Talking about the QSP for sets and semigroups
with apartness and its history - solution of the QSP for sets with apartness is for the first time given
in [6].

Let us remember that in CLASS the compatibility property given by

(𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝛼 ⇒ (𝑥𝑢, 𝑦𝑣) ∈ 𝛼,
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for any 𝑥, 𝑦, 𝑢, 𝑣 from a semigroup 𝑆, is an important condition for providing the semigroup structure
on quotient sets. Now we are looking for the tools for introducing an apartness relation on a factor
semigroup. Our starting point are the results from Subsection 3.4 as well as the next definitions.

A relation 𝜏 defined on a semigroup 𝑆 with apartness is called

• left co-compatible: (𝑧𝑥, 𝑧𝑦) ∈ 𝜏 ⇒ (𝑥, 𝑦) ∈ 𝜏,

• right co-compatible: (𝑥𝑧, 𝑦𝑧) ∈ 𝜏 ⇒ (𝑥, 𝑦) ∈ 𝜏,

• co-compatible: (𝑥𝑧, 𝑦𝑡) ∈ 𝜏 ⇒ (𝑥, 𝑦) ∈ 𝜏 ∨ (𝑧, 𝑡) ∈ 𝜏,

for any 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑆.
The lemma which follows will be used without special announcement.

Lemma 3 Let 𝜏 be a co-quasiorder on a semigroup with apartness 𝑆. Then, 𝜏 is co-compatible if
and only if 𝜏 is a left and a right co-compatible.

Proof. Let 𝜏 be a co-compatible co-quasiorder on 𝑆, and let 𝑥, 𝑦, 𝑧 ∈ 𝑆. Then (𝑧𝑥, 𝑧𝑦) ∈ 𝜏 implies
(𝑥, 𝑦) ∈ 𝜏 or (𝑧, 𝑧) ∈ 𝜏. The latter is impossible because of strong irreflexivity of 𝜏. Thus (𝑥, 𝑦) ∈ 𝜏,
i.e. 𝜏 is left co-compatible.

Conversely, let 𝜏 be a left and a right co-compatible co-quasiorder on 𝑆. Let 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑆 be such
that (𝑥𝑧, 𝑦𝑡) ∈ 𝜏. By the co-transitivity of 𝜏, it follows either (𝑥𝑧, 𝑦𝑧) ∈ 𝜏 or (𝑦𝑧, 𝑦𝑡) ∈ 𝜏. Now, by
the assumption, we have (𝑥, 𝑦) ∈ 𝜏 or (𝑧, 𝑡) ∈ 𝜏, as required. □

A co-equivalence 𝜅𝜅𝜅 is a co-congruence if it is co-compatible.

Theorem 6 Let 𝑆 be a semigroup with apartness, and let 𝜅 be a co-congruence on 𝑆. Define

𝑎𝜅𝑐 = 𝑏𝜅𝑐 ⇔ (𝑎, 𝑏) ⊲⊳ 𝜅,
𝑎𝜅𝑐 # 𝑏𝜅𝑐 ⇔ (𝑎, 𝑏) ∈ 𝜅,
𝑎𝜅𝑐 𝑏𝜅𝑐 = (𝑎𝑏)𝜅𝑐 .

Then (𝑆/𝜅𝑐 , =, #, · ) is a semigroup with apartness. Moreover, the quotient mapping 𝜋 : 𝑆 → 𝑆/𝜅𝑐 ,
defined by 𝜋(𝑥) = 𝑥𝜅𝑐 , is an se-epimorphism.

Proof. By Theorem 2, (𝑆/𝜅𝑐 , =,≠) is a set with apartness. The associativity of multiplication in
𝑆/𝜅𝑐 follows from that of multiplication on 𝑆.

Let 𝑎𝜅𝑐 𝑥𝜅𝑐#𝑏𝜅𝑐 𝑦𝜅𝑐 . Then (𝑎𝑥)𝜅𝑐#(𝑏𝑦)𝜅𝑐 . By Theorem 2, we have that (𝑎𝑥, 𝑏𝑦) ∈ 𝜅. But 𝜅 is a
co-congruence, so either (𝑎, 𝑏) ∈ 𝜅 or (𝑥, 𝑦) ∈ 𝜅. Thus, by the definition of # in 𝑆/𝜅𝑐 , either 𝑎𝜅𝑐#𝑏𝜅𝑐
or 𝑥𝜅𝑐#𝑦𝜅𝑐 . So (𝑆/𝜅𝑐 , =, #, · ) is a semigroup with apartness. Using that fact and the definition of 𝜋,
we have

𝜋(𝑥𝑦) = (𝑥𝑦)𝜅𝑐 = 𝑥𝜅𝑐 𝑦𝜅𝑐 = 𝜋(𝑥)𝜋(𝑦).
Hence 𝜋 is a homomorphism, and, by Theorem 2, 𝜋 is an se-surjection. □

The First apartness isomorphism theorem for semigroups with apartness follows.

Theorem 7 Let 𝑓 : 𝑆 → 𝑇 be an se-homomorphism between sets with apartness. Then

(i) coker 𝑓 is a co-congruence on 𝑆;

(ii) coker 𝑓 ↫ ker 𝑓 and ker 𝑓 ⊆ (coker 𝑓 )𝑐;

(iii) (𝑆/ker 𝑓 , =, #; ·) is a semigroup with apartness, where

𝑎(ker 𝑓 ) = 𝑏(ker 𝑓 ) ⇔ (𝑎, 𝑏) ∈ ker 𝑓
𝑎(ker 𝑓 ) # 𝑏(ker 𝑓 ) ⇔ (𝑎, 𝑏) ∈ coker 𝑓 ;
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(iv) The mapping 𝜑 : 𝑆/ker 𝑓 → 𝑇 , defined by 𝜑(𝑥(ker 𝑓 )) = 𝑓 (𝑥), is an apartness embedding
such that 𝑓 = 𝜑 𝜋;

(v) If 𝑓 maps 𝑆 onto 𝑇 , then 𝜑 is an apartness isomorphism.

Proof. (i). Taking into account Theorem 3, it is enough to prove that coker 𝑓 is co-compatible with
multiplication in 𝑆. Let (𝑎𝑥, 𝑏𝑦) ∈ coker 𝑓 , i.e. 𝑓 (𝑎𝑥)# 𝑓 (𝑏𝑦). Since 𝑓 is a homomorphism, we have
𝑓 (𝑎) 𝑓 (𝑥)# 𝑓 (𝑏) 𝑓 (𝑦). The strong extensionality of multiplication implies that either 𝑓 (𝑎)# 𝑓 (𝑏) or
𝑓 (𝑥)# 𝑓 (𝑦). Thus either (𝑎, 𝑏) ∈ coker 𝑓 or (𝑥, 𝑦) ∈ coker 𝑓 , and therefore coker 𝑓 is a co-congruence
on 𝑆.

(ii). This is Theorem 3(ii).
(iii). This follows by Theorem 3 and Theorem 6.
(iv). Using (iii) and the assumption that 𝑓 is a homomorphism, we have

𝜑(𝑥(𝑘𝑒𝑟 𝑓 ) 𝑦(𝑘𝑒𝑟 𝑓 )) = 𝜑((𝑥𝑦) (𝑘𝑒𝑟 𝑓 ))
= 𝑓 (𝑥𝑦)
= 𝑓 (𝑥) 𝑓 (𝑦)
= 𝜑(𝑥(𝑘𝑒𝑟 𝑓 )) 𝜑(𝑦(𝑘𝑒𝑟 𝑓 )).

⁀Now, by Theorem 3, 𝜑 is an apartness embedding.
(v). This follows by Theorem 3 and (iv). □

5 CONCLUDING REMARKS
We live in the era of AI and, as it is pointed out in [28], the era of mathematics.

“Everything we do is based on some mathematical structure, and although mathematics is often
considered abstract, it is fundamental to how we understand nature, the larger universe, with its time
and space dimensions and a myriad of uncertainties”, [29].

Following S. Russell and P. Norvig, [30], there is no the unique definition of AI, rather “The main
unifying theme is the idea of an intelligent agent [...] An agent is just something that acts (agent comes
from the Latin agere, to do). Of course, all computer programs do something, but computer agents
are expected to do more: operate autonomously, perceive their environment, persist over a prolonged
time period, adapt to change, and create and pursue goals.”

Algebraic structures, as often considered, represent templates for solving problems. Within a
scope of an algebraic structure can be found details enabling us with possibility to think clearly about
the bigger picture. This can give us a precise way to communicate with other (AI) scientists providing
clarity of thought and precise communication.

Within classical mathematics the algebraic theory of semigroups is a relative newcomer, with
the theory proper developing only in the second half of the twentieth century. Nowadays, classical
semigroup theory is an enormously broad topic with applications which have advanced on a very broad
front including AI areas, see, for example, [3], [8]. On the other hand, constructive mathematics has
not paid much attention to semigroup theory. Although one of the main motivators for initiating
and developing the theory of semigroups with apartness comes from the computer science area,
in order to have profound applications, our priority is to work on the growing the general theory.
Contrary to the classical case, the applications of constructive semigroups with apartness, due to their
novelty, constitute an unexplored area. There are promises of a prospective of applications in other
(constructive) mathematics disciplines, certain areas of computer science, social sciences, economics.

Applications of our theory present the second important line of our work. We believe that the
theory of constructive semigroups with apartness can be applied in solving problems like the ones
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described in D. McAlister, [31]: “A group can be defined as an algebra with one binary operation
satisfying certain non-equational conditions, or it can be defined as an algebra with a binary operation,
a unary operation (inverse) and a constant (the identity) satisfying certain equations. These two
definitions result in technically disjoint classes of objects. Can an automated reasoning system search
for, and hopefully find, equivalences between technically distinct definitions, such as the equivalence
between foo spaces and topological spaces, or the equivalence between a group as an algebra with one
operation and a group as an algebra with two operations and a constant?”

In developing, widening and propagating our theory we have in mind, and we are strongly
motivated by AI historical development. The history of AI is one of the newest fields in science and
engineering. The work started in earnest soon after World War II, and the name itself was coined
in 1956. The history of AI has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new creative approaches and
systematically refining the best ones, (source [30]). Nowdays we live in the era of AI.

Let us finish with P. C. Jackson’s words, [32]: “Are there some things mathematics cannot describe
completely? It is argued in an informal, yet mathematical way that the answer is YES. There are
limitations in the method of AI research because it is based (as is all science) on mathematics and
the capacities of mathematical disciplines [...] The scientific method is basically a way of selecting
mathematical descriptions of the universe.”
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[9] Mitrović, M., Silvestrov, S., 2020, (Apartness) Isomorphism theorems for basic constructive
algebraic structures with special emphasize on constructive semigroups with apartness - an
overview, pp. 653-686, In Stochastic Processes and Algebraic Structures -From Theory Towards
Applications, Volume II: Algebraic Structures and Applications, Västerȧs and Stockholm,
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